Oswald
Julie N.
Oswald
Julie N.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleWhistle characteristics and daytime dive behavior in pantropical spotted dolphins (Stenella attenuata) in Hawai‘i measured using digital acoustic recording tags (DTAGs)(Acoustical Society of America, 2016-07-19) Silva, Tammy L. ; Mooney, T. Aran ; Sayigh, Laela S. ; Tyack, Peter L. ; Baird, Robin W. ; Oswald, Julie N.This study characterizes daytime acoustic and dive behavior of pantropical spotted dolphins (Stenella attenuata) in Hawai‘i using 14.58 h of data collected from five deployments of digital acoustic recording tags (DTAG3) in 2013. For each tagged animal, the number of whistles, foraging buzzes, dive profiles, and dive statistics were calculated. Start, end, minimum, and maximum frequencies, number of inflection points and duration were measured from 746 whistles. Whistles ranged in frequency from 9.7 ± 2.8 to 19.8 ± 4.2 kHz, had a mean duration of 0.7 ± 0.5 s and a mean of 1.2 ± 1.2 inflection points. Thirteen foraging buzzes were recorded across all tags. Mean dive depth and duration were 16 ± 9 m and 1.9 ± 1.0 min, respectively. Tagged animals spent the majority of time in the upper 10 m (76.9% ± 16.1%) of the water column. Both whistle frequency characteristics and dive statistics measured here were similar to previously reported values for spotted dolphins in Hawai‘i. Shallow, short dive profiles combined with few foraging buzzes provide evidence that little spotted dolphin feeding behavior occurs during daytime hours. This work represents one of the first successful DTAG3 studies of small pelagic delphinids, providing rare insights into baseline bioacoustics and dive behavior.
-
ArticleDolphin whistles can be useful tools in identifying units of conservation(BMC, 2021-07-29) Papale, Elena B. ; Azzolin, Marta A. ; Cascão, Irma ; Gannier, Alexandre ; Lammers, Marc O. ; Martin, Vidal M. ; Oswald, Julie N. ; Perez-Gil, Monica ; Prieto, Rui ; Silva, Mónica A. ; Torri, Marco ; Giacoma, CristinaPrioritizing groupings of organisms or ‘units’ below the species level is a critical issue for conservation purposes. Several techniques encompassing different time-frames, from genetics to ecological markers, have been considered to evaluate existing biological diversity at a sufficient temporal resolution to define conservation units. Given that acoustic signals are expressions of phenotypic diversity, their analysis may provide crucial information on current differentiation patterns within species. Here, we tested whether differences previously delineated within dolphin species based on i) geographic isolation, ii) genetics regardless isolation, and iii) habitat, regardless isolation and genetics, can be detected through acoustic monitoring. Recordings collected from 104 acoustic encounters of Stenella coeruleoalba, Delphinus delphis and Tursiops truncatus in the Azores, Canary Islands, the Alboran Sea and the Western Mediterranean basin between 1996 and 2012 were analyzed. The acoustic structure of communication signals was evaluated by analyzing parameters of whistles in relation to the known genetic and habitat-driven population structure.