McNichol Ann P.

No Thumbnail Available
Last Name
McNichol
First Name
Ann P.
ORCID
0000-0002-9895-3912

Search Results

Now showing 1 - 20 of 47
  • Article
    Marine organic carbon and radiocarbon – present and future challenges
    (Cambridge University Press, 2022-01-25) Druffel, Ellen R. M. ; Beaupre, Steven R. ; Grotheer, Hendrik ; Lewis, Christian B. ; McNichol, Ann P. ; Mollenhauer, Gesine ; Walker, Brett D.
    We discuss present and developing techniques for studying radiocarbon in marine organic carbon (C). Bulk DOC (dissolved organic C) Δ14C measurements reveal information about the cycling time and sources of DOC in the ocean, yet they are time consuming and need to be streamlined. To further elucidate the cycling of DOC, various fractions have been separated from bulk DOC, through solid phase extraction of DOC, and ultrafiltration of high and low molecular weight DOC. Research using 14C of DOC and particulate organic C separated into organic fractions revealed that the acid insoluble fraction is similar in 14C signature to that of the lipid fraction. Plans for utilizing this methodology are described. Studies using compound specific radiocarbon analyses to study the origin of biomarkers in the marine environment are reviewed and plans for the future are outlined. Development of ramped pyrolysis oxidation methods are discussed and scientific questions addressed. A modified elemental analysis (EA) combustion reactor is described that allows high particulate organic C sample throughput by direct coupling with the MIniCArbonDAtingSystem.
  • Article
    Dissolved organic radiocarbon in the central Pacific Ocean
    (American Geophysical Union, 2019-05-02) Druffel, Ellen R. M. ; Griffin, Sheila ; Wang, Ning ; Garcia, Noreen G. ; McNichol, Ann P. ; Key, Robert M. ; Walker, Brett D.
    We report marine dissolved organic carbon (DOC) concentrations, and DOC ∆14C and δ13C values in seawater collected from the central Pacific. Surface ∆14C values are low in equatorial and polar regions where upwelling occurs and high in subtropical regions dominated by downwelling. A core feature of these data is that 14C aging of DOC (682 ± 86 14C years) and dissolved inorganic carbon (643 ± 40 14C years) in Antarctic Bottom Water between 54.0°S and 53.5°N are similar. These estimates of aging are minimum values due to mixing with deep waters. We also observe minimum ∆14C values (−550‰ to −570‰) between the depths of 2,000 and 3,500 m in the North Pacific, though the source of the low values cannot be determined at this time.
  • Article
    Transfer of organic carbon through marine water columns to sediments – insights from stable and radiocarbon isotopes of lipid biomarkers
    (Copernicus Publications on behalf of the European Geosciences Union, 2014-12-10) Wakeham, Stuart G. ; McNichol, Ann P.
    Compound-specific 13C and 14C compositions of diverse lipid biomarkers (fatty acids, alkenones, hydrocarbons, sterols and fatty alcohols) were measured in sinking particulate matter collected in sediment traps and from underlying surface sediments in the Black Sea, the Arabian Sea and the Ross Sea. The goal was to develop a multiparameter approach to constrain relative inputs of organic carbon (OC) from marine biomass, terrigenous vascular-plant and relict-kerogen sources. Using an isotope mass balance, we calculate that marine biomass in sediment trap material from the Black Sea and Arabian Sea accounted for 66–100% of OC, with lower terrigenous (3–8%) and relict (4–16%) contributions. Marine biomass in sediments constituted lower proportions of OC (66–90%), with consequentially higher proportions of terrigenous and relict carbon (3–17 and 7–13%, respectively). Ross Sea data were insufficient to allow similar mass balance calculations. These results suggest that, whereas particulate organic carbon is overwhelmingly marine in origin, pre-aged allochthonous terrigenous and relict OC become proportionally more important in sediments, consistent with pre-aged OC being better preserved during vertical transport to and burial at the seafloor than the upper-ocean-derived marine OC.
  • Preprint
    Constraining the sources and cycling of dissolved organic carbon in a large oligotrophic lake using radiocarbon analyses
    ( 2017-03) Zigah, Prosper ; Minor, Elizabeth C. ; McNichol, Ann P. ; Xu, Li ; Werne, Josef P.
    We measured the concentrations and isotopic compositions of solid phase extracted (SPE) dissolved organic carbon (DOC) and high molecular weight (HMW) DOC and their constituent organic components in order to better constrain the sources and cycling of DOC in a large oligotrophic lacustrine system (Lake Superior, North America). SPE DOC constituted a significant proportion (41-71 %) of the lake DOC relative to HMW DOC (10-13%). Substantial contribution of 14C-depleted components to both SPE DOC (Δ14C = 25 to 43‰) and HMW DOC (Δ14C = 22 to 32‰) was evident during spring mixing, and depressed their radiocarbon values relative to the lake dissolved inorganic carbon (DIC; Δ14C ~ 59‰). There was preferential removal of 14C-depleted (older) and thermally recalcitrant components from HMW DOC and SPE DOC in the summer. Contemporary photoautotrophic addition to HMW DOC was observed during summer stratification in contrast to SPE DOC, which decreased in concentration during stratification. Serial thermal oxidation radiocarbon analysis revealed a diversity of sources (both contemporary and older) within the SPE DOC, and also showed distinct components within the HMW DOC. The thermally labile components of HMW DOC were 14C-enriched and are attributed to heteropolysaccharides (HPS), peptides/amide and amino sugars (AMS) relative to the thermally recalcitrant components reflecting the presence of older material, perhaps carboxylic-rich alicyclic molecules (CRAM). The solvent extractable lipid-like fraction of HMW DOC was very 14C-depleted (as old as 1270-2320 14C years) relative to the carbohydrate-like and protein-like substances isolated by acid hydrolysis of HMW DOC. Our data constrain relative influences of contemporary DOC and old DOC, and DOC cycling in a modern freshwater ecosystem.
  • Article
    Dissolved organic radiocarbon in the eastern Pacific and Southern Oceans
    (American Geophysical Union, 2021-05-24) Druffel, Ellen R. M. ; Griffin, Sheila ; Lewis, Christian B. ; Rudresh, Megha ; Garcia, Noreen G. ; Key, Robert M. ; McNichol, Ann P. ; Hauksson, Niels E. ; Walker, Brett D.
    We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C values in seawater collected from the Southern Ocean and eastern Pacific GOSHIP cruise P18 in 2016/2017. The aging of 14C in DOC in circumpolar deep water northward from 69°S to 20°N was similar to that measured in dissolved inorganic carbon in the same samples, indicating that the transport of deep waters northward is the primary control of 14C in DIC and DOC. Low DOC ∆14C and δ13C measurements between 1,200 and 3,400 m depth may be evidence of a source of DOC produced in nearby hydrothermal ridge systems (East Pacific Rise).
  • Article
    Significance of perylene for source allocation of terrigenous organic matter in aquatic sediments.
    (American Chemical Society, 2019-06-19) Hanke, Ulrich ; Lima-Braun, Ana L. ; Eglinton, Timothy I. ; Donnelly, Jeffrey P. ; Galy, Valier ; Poussart, Pascale F. ; Hughen, Konrad A. ; McNichol, Ann P. ; Xu, Li ; Reddy, Christopher M.
    Perylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in geochemical research and pollutant forensics because its historical record differs markedly from typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary record (1735 to 1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI, USA to examine mass accumulation rates and isotope records of perylene, and compare them with total organic carbon and the anthropogenic PAH fluoranthene. We support our arguments with radiocarbon (14C) data of higher plant leaf-wax n-alkanoic acids. Isotope-mass balance calculations of perylene and n-alkanoic acids indicate that ~40 % of sedimentary organic matter is of terrestrial origin. Further, both terrestrial markers are pre-aged on millennial time-scales prior to burial in sediments and insensitive to elevated 14C concentrations following nuclear weapons testing in the mid-20th Century. Instead, changes coincide with enhanced erosional flux during urban sprawl. These findings suggest that perylene is definitely a product of soil derived fungi, and a powerful chemical tracer to study spatial and temporal connectivity between terrestrial and aquatic environments.
  • Article
    Coastal New England pilot study to determine fossil and biogenic formaldehyde source contributions using radiocarbon
    (American Geophysical Union, 2010-05-18) Shen, Haiwei ; Heikes, Brian G. ; Merrill, John T. ; McNichol, Ann P. ; Xu, Li
    Compound specific radiocarbon analyses of atmospheric formaldehyde are reported as fraction modern (Fm) for a limited number of winter and summer air samples collected in coastal southern New England in 2007. The 11 of 13 samples with Fm < 0.2 were collected under the influence of the semipermanent Bermuda high-pressure system with transport from the Washington, D. C., to New York City urban corridor. The two samples with Fm > 0.2 (max ∼ 0.35) were collected on days with strong northwesterly flow and the least urban impact. The Fm data were combined with VOC observations from the Rhode Island Department of Environmental Management, estimates of oxygenated VOC (OVOC), and back trajectories to interpret the relative contributions of biogenic and fossil carbon sources. It is argued that CH2O sources were dominated by pollutant VOCs and OVOCs from upwind coastal cities as opposed to more local biogenic VOCs at the times of sample collection.
  • Article
    Fire history of a giant African baobab evinced by radiocarbon dating
    (Dept. of Geosciences, University of Arizona, 2010-08) Patrut, Adrian ; Mayne, Diana H. ; von Reden, Karl F. ; Lowy, Daniel A. ; Van Pelt, Robert ; McNichol, Ann P. ; Roberts, Mark L. ; Margineanu, Dragos
    The article reports the first radiocarbon dating of a live African baobab (Adansonia digitata L.), by investigating wood samples collected from 2 inner cavities of the very large 2-stemmed Platland tree of South Africa. Some 16 segments extracted from determined positions of the samples, which correspond to a depth of up to 15–20 cm in the wood, were processed and analyzed by accelerator mass spectrometry (AMS). Calibrated ages of segments are not correlated with their positions in the stems of the tree. Dating results indicate that the segments originate from new growth layers, with a thickness of several centimeters, which cover the original old wood. Four new growth layers were dated before the reference year AD 1950 and 2 layers were dated post-AD 1950, in the post-bomb period. Formation of these layers was triggered by major damage inside the cavities. Fire episodes are the only possible explanation for such successive major wounds over large areas or over the entire area of the inner cavities of the Platland tree, able to trigger regrowth.
  • Article
    Radiocarbon content of dissolved organic carbon in the South Indian Ocean
    (John Wiley & Sons, 2018-01-24) Bercovici, Sarah K. ; McNichol, Ann P. ; Xu, Li ; Hansell, Dennis A.
    We report four profiles of the radiocarbon content of dissolved organic carbon (DOC) spanning the South Indian Ocean (SIO), ranging from the Polar Front (56°S) to the subtropics (29°S). Surface waters held mean DOC Δ14C values of −426 ± 6‰ (~4,400 14C years) at the Polar Front and DOC Δ14C values of −252 ± 22‰ (~2,000 14C years) in the subtropics. At depth, Circumpolar Deep Waters held DOC Δ14C values of −491 ± 13‰ (~5,400 years), while values in Indian Deep Water were more depleted, holding DOC Δ14C values of −503 ± 8‰ (~5,600 14C years). High-salinity North Atlantic Deep Water intruding into the deep SIO had a distinctly less depleted DOC Δ14C value of −481 ± 8‰ (~5,100 14C years). We use multiple linear regression to assess the dynamics of DOC Δ14C values in the deep Indian Ocean, finding that their distribution is characteristic of water masses in that region.
  • Article
    Movement of deep-sea coral populations on climatic timescales
    (John Wiley & Sons, 2013-05-30) Thiagarajan, Nivedita ; Gerlach, Dana ; Roberts, Mark L. ; Burke, Andrea ; McNichol, Ann P. ; Jenkins, William J. ; Subhas, Adam V. ; Thresher, Ronald E. ; Adkins, Jess F.
    During the past 40,000 years, global climate has moved into and out of a full glacial period, with the deglaciation marked by several millennial-scale rapid climate change events. Here we investigate the ecological response of deep-sea coral communities to both glaciation and these rapid climate change events. We find that the deep-sea coral populations of Desmophyllum dianthus in both the North Atlantic and the Tasmanian seamounts expand at times of rapid climate change. However, during the more stable Last Glacial Maximum, the coral population globally retreats to a more restricted depth range. Holocene populations show regional patterns that provide some insight into what causes these dramatic changes in population structure. The most important factors are likely responses to climatically driven changes in productivity, [O2] and [CO32–].
  • Preprint
    The effect of sample drying temperature on marine particulate organic carbon composition
    ( 2018-02) Rosengard, Sarah Z. ; Lam, Phoebe J. ; McNichol, Ann P. ; Johnson, Carl G. ; Galy, Valier
    Compositional changes in marine particulate organic carbon (POC) throughout the water column trace important processes that underlie the biological pump’s efficiency. While labor-intensive, particle sampling efforts offer potential to expand the empirical POC archive at different stages in the water column, provided that organic composition is sufficiently preserved between sampling and analysis. The standard procedure for preserving organic matter composition in marine samples is to immediately store particles at -80°C to -20°C until they can be freeze-dried for analysis. This report investigates the effect of warmer drying and storage temperatures on POC composition, which applies to the majority of POC samples collected in the field without intention for organic analysis. Particle samples collected off Woods Hole, MA were immediately dried at 56°C, at room temperature, or stored at -80°C until being freeze-dried. Results show that oven- and air-drying did not shift the bulk composition (i.e., carbon and nitrogen content and stable isotope composition) of POC in the samples relative to freeze-drying. Similarly, warmer drying temperatures did not affect POC thermal stability, as inferred by ramped pyrolysis/oxidation (RPO), a growing technique that uses a continuous temperature ramp to differentiate components of organic carbon by their decomposition temperature. Oven- and air-drying did depress lipid abundances relative to freeze-drying, the extent of which depended on compound size and structure. The data suggest that field samples dried at room temperatures and 56°C are appropriate for assessing bulk POC composition and thermal stability, but physical mechanisms such as molecular volatilization bias their lipid composition.
  • Dataset
    Discrete bottle sample measurements for carbonate chemistry from samples collected in the Sage Lot Pond salt marsh tidal creek in Waquoit Bay, MA from 2012 to 2015
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-05-29) Wang, Zhaohui Aleck ; Gonneea, Meagan ; Kroeger, Kevin D.
    Discrete bottle sample measurements for carbonate chemistry from samples collected in the Sage Lot Pond salt marsh tidal creek in Waquoit Bay, MA from 2012 to 2015. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/768577
  • Dataset
    Discrete bottle sample measurements for carbonate chemistry, organic alkalinity and organic carbon from samples collected in Waquoit Bay and Vineyard Sound, MA in 2016
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-02-26) Wang, Zhaohui Aleck ; Song, Shuzhen ; Gonneea, Meagan ; Kroeger, Kevin
    Discrete bottle sample measurements for carbonate chemistry, organic alkalinity and organic carbon from samples collected in Waquoit Bay and Vineyard Sound, MA in 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/794163
  • Article
    Radiocarbon measurements in the Indian Ocean aboard RVIB Nathaniel B. Palmer
    (The Oceanography Society, 2012-09) Key, Robert M. ; McNichol, Ann P.
    Research Vessel Icebreaker Nathaniel B. Palmer departed Cape Town, South Africa, on May 3, 1996, to complete the Indian Ocean portion of the "S04" line, a circumnavigation of Antarctica that was part of the US contribution to the World Ocean Circulation Experiment (WOCE). The WOCE Line S04I voyage ended at Hobart, Tasmania, on July 4, 1996, following completion of 108 stations, despite suspension of science operations for seven days on June 8, when the Palmer was diverted to deliver emergency food supplies to Russia's Mirny Station in the Davis Sea. During this extreme south cruise, with Thomas Whitworth III (Texas A&M University) and James H. Swift (Scripps Institution of Oceanography) as co-chief scientists, a total of 816 radiocarbon samples were collected by author Key at 31 stations, and these samples were later analyzed by author McNichol at the National Ocean Sciences Accelerator Mass Spectrometry Facility at the Woods Hole Oceanographic Institution.
  • Article
    Soil organic carbon development and turnover in natural and disturbed salt marsh environments
    (American Geophysical Union, 2020-12-11) Luk, Sheron Y. ; Todd‐Brown, Katherine ; Eagle, Meagan ; McNichol, Ann P. ; Sanderman, Jonathan ; Gosselin, Kelsey M. ; Spivak, Amanda C.
    Salt marsh survival with sea‐level rise (SLR) increasingly relies on soil organic carbon (SOC) accumulation and preservation. Using a novel combination of geochemical approaches, we characterized fine SOC (≤1 mm) supporting marsh elevation maintenance. Overlaying thermal reactivity, source (δ13C), and age (F14C) information demonstrates several processes contributing to soil development: marsh grass production, redeposition of eroded material, and microbial reworking. Redeposition of old carbon, likely from creekbanks, represented ∼9%–17% of shallow SOC (≤26 cm). Soils stored marsh grass‐derived compounds with a range of reactivities that were reworked over centuries‐to‐millennia. Decomposition decreases SOC thermal reactivity throughout the soil column while the decades‐long disturbance of ponding accelerated this shift in surface horizons. Empirically derived estimates of SOC turnover based on geochemical composition spanned a wide range (640–9,951 years) and have the potential to inform predictions of marsh ecosystem evolution.
  • Preprint
    Software development for continuous-gas-flow AMS
    ( 2007-09) von Reden, Karl F. ; Roberts, Mark L. ; Jenkins, William J. ; Rosenheim, Brad E. ; McNichol, Ann P. ; Schneider, Robert J.
    The National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility at Woods Hole Oceanographic Institution is presently completing installation of a novel continuous-flow AMS system. A multi-year development of an AMS microwave gas ion source in collaboration with Atomic Energy Canada Limited (AECL), Chalk River, has preceded this final step of an implementation that is expected to add a new dimension to 14C AMS. National Instruments, NIM, and CAMAC modules have been programmed with LabVIEW on a Windows XP platform to form the basis for data acquisition. In this paper we discuss possible applications and include simulations of expected data acquisition scenarios like real-time AMS analysis of chromatograms. Particular attention is given to issues of synchronization between rapidly changing input amplitudes and signal processing cycles in hardware and software.
  • Preprint
    Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments
    ( 2005-12-29) Wakeham, Stuart G. ; McNichol, Ann P. ; Kostka, Joel E. ; Pease, Tamara K.
    The natural abundance of radiocarbon (14C) provides unique insight into the source and cycling of sedimentary organic matter. Radiocarbon analysis of bacterial phospholipid lipid fatty acids (PLFAs) in salt-marsh sediments of southeast Georgia (USA) – one heavily contaminated by petroleum residues – was used to assess the fate of petroleum-derived carbon in sediments and incorporation of fossil carbon into microbial biomass. PLFAs that are common components of eubacterial cell membranes (e.g., branched C15 and C17, 10-methyl-C16) were depleted in 14C in the contaminated sediment (mean Δ14C value of +25 ± 19 ‰ for bacterial PLFAs) relative to PLFAs in uncontaminated “control” sediment (Δ14C = +101 ± 12‰). We suggest that the 14C-depletion in bacterial PLFAs at the contaminated site results from microbial metabolism of petroleum and subsequent incorporation of petroleum-derived carbon into bacterial membrane lipids. A mass balance calculation indicates that 6-10% of the carbon in bacterial PLFAs at the oiled site could derive from petroleum residues. These results demonstrate that even weathered petroleum may contain components of sufficient lability to be a carbon source for biomass production by marsh sediment microorganisms. Furthermore, a small but significant fraction of fossil carbon is assimilated even in the presence of a much larger pool of presumably more-labile and faster-cycling carbon substrates.
  • Preprint
    Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the Ramped Pyrolysis/Oxidation instrument at NOSAMS
    ( 2017-03) Hemingway, Jordon D. ; Galy, Valier ; Gagnon, Alan R. ; Grant, Katherine E. ; Rosengard, Sarah Z. ; Soulet, Guillaume ; Zigah, Prosper ; McNichol, Ann P.
    We estimate the blank carbon mass over the course of a typical Ramped PyrOx (RPO) analysis (150 to 1000 °C; 5 °C×min-1) to be (3.7 ± 0.6) μg C with an Fm value of 0.555 ± 0.042 and a δ13C value of (-29.0 ± 0.1) ‰ VPDB. Additionally, we provide equations for RPO Fm and δ13C blank corrections, including associated error propagation. By comparing RPO mass-weighted mean and independently measured bulk δ13C values for a compilation of environmental samples and standard reference materials (SRMs), we observe a small yet consistent 13C depletion within the RPO instrument (mean – bulk: μ = -0.8 ‰; ±1σ = 0.9 ‰; n = 66). In contrast, because they are fractionation-corrected by definition, mass-weighted mean Fm values accurately match bulk measurements (mean – bulk: μ = 0.005; ±1σ = 0.014; n = 36). Lastly, we show there exists no significant intra-sample δ13C variability across carbonate SRM peaks, indicating minimal mass-dependent kinetic isotope fractionation during RPO analysis. These data are best explained by a difference in activation energy between 13C- and 12C-containing compounds (13–12ΔE) of 0.3 to 1.8 J×mol-1, indicating that blank and mass-balance corrected RPO δ13C values accurately retain carbon source isotope signals to within 1 to 2‰.
  • Article
    Global ocean radiocarbon programs
    (Cambridge University Press, 2022-04-21) McNichol, Ann P. ; Key, Robert M. ; Guilderson, Thomas P.
    The importance of studying the radiocarbon content of dissolved inorganic carbon (DI14C) in the oceans has been recognized for decades. Starting with the GEOSECS program in the 1970s, 14C sampling has been a part of most global survey programs. Early results were used to study air-sea gas exchange while the more recent results are critical for helping calibrate ocean general circulation models used to study the effects of climate change. Here we summarize the major programs and discuss some of the important insights the results are starting to provide.
  • Article
    A continuous-flow gas chromatography 14C accelerator mass spectrometry system
    (Dept. of Geosciences, University of Arizona, 2010-08) McIntyre, Cameron P. ; Galutschek, Ernst ; Roberts, Mark L. ; von Reden, Karl F. ; McNichol, Ann P. ; Jenkins, William J.
    Gas-accepting ion sources for radiocarbon accelerator mass spectrometry (AMS) have permitted the direct analysis of CO2 gas, eliminating the need to graphitize samples. As a result, a variety of analytical instruments can be interfaced to an AMS system, processing time is decreased, and smaller samples can be analyzed (albeit with lower precision). We have coupled a gas chromatograph to a compact 14C AMS system fitted with a microwave ion source for real-time compoundspecific 14C analysis. As an initial test of the system, we have analyzed a sample of fatty acid methyl esters and biodiesel. Peak shape and memory was better then existing systems fitted with a hybrid ion source while precision was comparable. 14C/12C ratios of individual components at natural abundance levels were consistent with those determined by conventional methods. Continuing refinements to the ion source are expected to improve the performance and scope of the instrument.