Carlon David B.

No Thumbnail Available
Last Name
First Name
David B.

Search Results

Now showing 1 - 2 of 2
  • Article
    Mitochondrial genotype influences the response to cold stress in the European green crab Carcinus maenas
    (Company of Biologists, 2019-07-08) Coyle, Aidan F. ; Voss, Erin R. ; Tepolt, Carolyn K. ; Carlon, David B.
    Hybrid zones provide natural experiments in recombination within and between genomes that may have strong effects on organismal fitness. On the East Coast of North America, two distinct lineages of the European green crab (Carcinus maenas) have been introduced in the last two centuries. These two lineages with putatively different adaptive properties have hybridized along the coast of the eastern Gulf of Maine, producing new nuclear and mitochondrial combinations that show clinal variation correlated with water temperature. To test the hypothesis that mitochondrial or nuclear genes have effects on thermal tolerance, we first measured the response to cold stress in crabs collected throughout the hybrid zone, then sequenced the mitochondrial CO1 gene and two nuclear single nucleotide polymorphisms (SNPs) representative of nuclear genetic lineage. Mitochondrial haplotype had a strong association with the ability of crabs to right themselves at 4.5°C that was sex specific: haplotypes originally from northern Europe gave male crabs an advantage while there was no haplotype effect on righting in female crabs. By contrast, the two nuclear SNPs that were significant outliers in a comparison between northern and southern C. maenas populations had no effect on righting response at low temperature. These results add C. maenas to the shortlist of ectotherms in which mitochondrial variation has been shown to affect thermal tolerance, and suggest that natural selection is shaping the structure of the hybrid zone across the Gulf of Maine. Our limited genomic sampling does not eliminate the strong possibility that mito-nuclear co-adaptation may play a role in the differences in thermal phenotypes documented here. Linkage between mitochondrial genotype and thermal tolerance suggests a role for local adaptation in promoting the spread of invasive populations of C. maenas around the world.
  • Article
    Two distinct population clusters of northern sand lance ( Ammodytes dubius ) on the northwest Atlantic shelf revealed by whole genome sequencing
    (Oxford University Press, 2022-12-05) Jones, Lucas F. ; Lou, R. Nicolas ; Murray, Christopher S. ; Robert, Dominique ; Bourne, Christina M. ; Bouchard, Caroline ; Kučka, Marek ; Chan, Y. Frank ; Carlon, David B. ; Wiley, David N. ; Therkildsen, Nina O. ; Baumann, Hannes
    Abstract Northern sand lance (Ammodytes dubius) are essential forage fish in most offshore, temperate-to-polar waters on the Northwest Atlantic shelf (NWA), but their population structure and genetic separation from the American sand lance (A. americanus) remain unresolved. We assembled a reference genome for A. dubius (first in the Ammodytidae) and then used low-coverage whole genome sequencing on 262 specimens collected across the species distribution (Mid-Atlantic Bight to Greenland) to quantify genetic differentiation between geographic regions based on single nucleotide polymorphisms. We found strong separation between A. dubius from locations north and south of the Scotian Shelf, largely due to massive genetic differentiation spanning most of chromosomes 21 and 24. Genetic distance increased with geographic distance in the smaller southern cluster but not in the larger northern cluster, where genetic homogeneity appeared across large geographic distances (>103 km). The two genetic clusters coincide with a clear break in winter sea surface temperature, suggesting that differential offspring survival, rather than limited transport, causes a break in realized connectivity. Nuclear and mitochondrial DNA both clearly delineated A. dubius from A. americanus, thereby confirming a species boundary through spatial niche partitioning into inshore (A. americanus) and offshore (A. dubius) sand lance species on the NWA.