Volkov Denis L.

No Thumbnail Available
Last Name
Volkov
First Name
Denis L.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future
    (Frontiers Media, 2019-07-24) Goni, Gustavo J. ; Sprintall, Janet ; Bringas, Francis ; Cheng, Lijing ; Cirano, Mauro ; Dong, Shenfu ; Domingues, Ricardo ; Goes, Marlos Pereira ; Lopez, Hosmay ; Morrow, Rosemary ; Rivero, Ulises ; Rossby, H. Thomas ; Todd, Robert E. ; Trinanes, Joaquin ; Zilberman, Nathalie ; Baringer, Molly O. ; Boyer, Tim ; Cowley, Rebecca ; Domingues, Catia M. ; Hutchinson, Katherine ; Kramp, Martin ; Mata, Mauricio M. ; Reseghetti, Franco ; Sun, Charles ; Udaya Bhaskar, T. V. S. ; Volkov, Denis L.
    The first eXpendable BathyThermographs (XBTs) were deployed in the 1960s in the North Atlantic Ocean. In 1967 XBTs were deployed in operational mode to provide a continuous record of temperature profile data along repeated transects, now known as the Global XBT Network. The current network is designed to monitor ocean circulation and boundary current variability, basin-wide and trans-basin ocean heat transport, and global and regional heat content. The ability of the XBT Network to systematically map the upper ocean thermal field in multiple basins with repeated trans-basin sections at eddy-resolving scales remains unmatched today and cannot be reproduced at present by any other observing platform. Some repeated XBT transects have now been continuously occupied for more than 30 years, providing an unprecedented long-term climate record of temperature, and geostrophic velocity profiles that are used to understand variability in ocean heat content (OHC), sea level change, and meridional ocean heat transport. Here, we present key scientific advances in understanding the changing ocean and climate system supported by XBT observations. Improvement in XBT data quality and its impact on computations, particularly of OHC, are presented. Technology development for probes, launchers, and transmission techniques are also discussed. Finally, we offer new perspectives for the future of the Global XBT Network.
  • Book chapter
    Global Oceans [in “State of the Climate in 2020”]
    (American Meteorological Society, 2021-08-01) Johnson, Gregory C. ; Lumpkin, Rick ; Alin, Simone R. ; Amaya, Dillon J. ; Baringer, Molly O. ; Boyer, Tim ; Brandt, Peter ; Carter, Brendan ; Cetinić, Ivona ; Chambers, Don P. ; Cheng, Lijing ; Collins, Andrew U. ; Cosca, Cathy ; Domingues, Ricardo ; Dong, Shenfu ; Feely, Richard A. ; Frajka-Williams, Eleanor E. ; Franz, Bryan A. ; Gilson, John ; Goni, Gustavo J. ; Hamlington, Benjamin D. ; Herrford, Josefine ; Hu, Zeng-Zhen ; Huang, Boyin ; Ishii, Masayoshi ; Jevrejeva, Svetlana ; Kennedy, John J. ; Kersalé, Marion ; Killick, Rachel E. ; Landschützer, Peter ; Lankhorst, Matthias ; Leuliette, Eric ; Locarnini, Ricardo ; Lyman, John ; Marra, John F. ; Meinen, Christopher S. ; Merrifield, Mark ; Mitchum, Gary ; Moat, Bengamin I. ; Nerem, R. Steven ; Perez, Renellys ; Purkey, Sarah G. ; Reagan, James ; Sanchez-Franks, Alejandra ; Scannell, Hillary A. ; Schmid, Claudia ; Scott, Joel P. ; Siegel, David A. ; Smeed, David A. ; Stackhouse, Paul W. ; Sweet, William V. ; Thompson, Philip R. ; Trinanes, Joaquin ; Volkov, Denis L. ; Wanninkhof, Rik ; Weller, Robert A. ; Wen, Caihong ; Westberry, Toby K. ; Widlansky, Matthew J. ; Wilber, Anne C. ; Yu, Lisan ; Zhang, Huai-Min
    This chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record. In this overview we address a few of the highlights, first in haiku, then paragraph form: La Niña arrives, shifts winds, rain, heat, salt, carbon: Pacific—beyond. Global ocean conditions in 2020 reflected a transition from an El Niño in 2018–19 to a La Niña in late 2020. Pacific trade winds strengthened in 2020 relative to 2019, driving anomalously westward Pacific equatorial surface currents. Sea surface temperatures (SSTs), upper ocean heat content, and sea surface height all fell in the eastern tropical Pacific and rose in the western tropical Pacific. Efflux of carbon dioxide from ocean to atmosphere was larger than average across much of the equatorial Pacific, and both chlorophyll-a and phytoplankton carbon concentrations were elevated across the tropical Pacific. Less rain fell and more water evaporated in the western equatorial Pacific, consonant with increased sea surface salinity (SSS) there. SSS may also have increased as a result of anomalously westward surface currents advecting salty water from the east. El Niño–Southern Oscillation conditions have global ramifications that reverberate throughout the report.
  • Article
    Autonomous multi-platform observations during the Salinity Processes in the Upper-ocean Regional Study
    (Oceanography Society, 2017-06) Lindstrom, Eric ; Shcherbina, Andrey Y. ; Rainville, Luc ; Farrar, J. Thomas ; Centurioni, Luca R. ; Dong, Shenfu ; D'Asaro, Eric A. ; Eriksen, Charles C. ; Fratantoni, David M. ; Hodges, Benjamin A. ; Hormann, Verena ; Kessler, William S. ; Lee, Craig M. ; Riser, Stephen C. ; St. Laurent, Louis C. ; Volkov, Denis L.
    The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.
  • Article
    Atlantic meridional overturning circulation: Observed transport and variability
    (Frontiers Media, 2019-06-07) Frajka-Williams, Eleanor ; Ansorge, Isabelle ; Baehr, Johanna ; Bryden, Harry L. ; Chidichimo, Maria Paz ; Cunningham, Stuart A. ; Danabasoglu, Gokhan ; Dong, Shenfu ; Donohue, Kathleen A. ; Elipot, Shane ; Heimbach, Patrick ; Holliday, Naomi Penny ; Hummels, Rebecca ; Jackson, Laura C. ; Karstensen, Johannes ; Lankhorst, Matthias ; Le Bras, Isabela A. ; Lozier, M. Susan ; McDonagh, Elaine L. ; Meinen, Christopher S. ; Mercier, Herlé ; Moat, Bengamin I. ; Perez, Renellys ; Piecuch, Christopher G. ; Rhein, Monika ; Srokosz, Meric ; Trenberth, Kevin E. ; Bacon, Sheldon ; Forget, Gael ; Goni, Gustavo J. ; Kieke, Dagmar ; Koelling, Jannes ; Lamont, Tarron ; McCarthy, Gerard D. ; Mertens, Christian ; Send, Uwe ; Smeed, David A. ; Speich, Sabrina ; van den Berg, Marcel ; Volkov, Denis L. ; Wilson, Christopher G.
    The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26°N, 11°S, SAMBA 34.5°S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16°N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.
  • Article
    Global perspectives on observing ocean boundary current systems
    (Frontiers Media, 2019-08-08) Todd, Robert E. ; Chavez, Francisco P. ; Clayton, Sophie A. ; Cravatte, Sophie ; Goes, Marlos Pereira ; Graco, Michelle ; Lin, Xiaopei ; Sprintall, Janet ; Zilberman, Nathalie ; Archer, Matthew ; Arístegui, Javier ; Balmaseda, Magdalena A. ; Bane, John M. ; Baringer, Molly O. ; Barth, John A. ; Beal, Lisa M. ; Brandt, Peter ; Calil, Paulo H. R. ; Campos, Edmo ; Centurioni, Luca R. ; Chidichimo, Maria Paz ; Cirano, Mauro ; Cronin, Meghan F. ; Curchitser, Enrique N. ; Davis, Russ E. ; Dengler, Marcus ; deYoung, Brad ; Dong, Shenfu ; Escribano, Ruben ; Fassbender, Andrea ; Fawcett, Sarah E. ; Feng, Ming ; Goni, Gustavo J. ; Gray, Alison R. ; Gutiérrez, Dimitri ; Hebert, Dave ; Hummels, Rebecca ; Ito, Shin-ichi ; Krug, Marjolaine ; Lacan, Francois ; Laurindo, Lucas ; Lazar, Alban ; Lee, Craig M. ; Lengaigne, Matthieu ; Levine, Naomi M. ; Middleton, John ; Montes, Ivonne ; Muglia, Michael ; Nagai, Takeyoshi ; Palevsky, Hilary I. ; Palter, Jaime B. ; Phillips, Helen E. ; Piola, Alberto R. ; Plueddemann, Albert J. ; Qiu, Bo ; Rodrigues, Regina ; Roughan, Moninya ; Rudnick, Daniel L. ; Rykaczewski, Ryan R. ; Saraceno, Martin ; Seim, Harvey E. ; Sen Gupta, Alexander ; Shannon, Lynne ; Sloyan, Bernadette M. ; Sutton, Adrienne J. ; Thompson, LuAnne ; van der Plas, Anja K. ; Volkov, Denis L. ; Wilkin, John L. ; Zhang, Dongxiao ; Zhang, Linlin
    Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.