Gooseff Michael N.

No Thumbnail Available
Last Name
First Name
Michael N.

Search Results

Now showing 1 - 5 of 5
  • Article
    Surface and hyporheic transient storage dynamics throughout a coastal stream network
    (American Geophysical Union, 2010-06-22) Briggs, Martin A. ; Gooseff, Michael N. ; Peterson, Bruce J. ; Morkeski, Kate ; Wollheim, Wilfred M. ; Hopkinson, Charles S.
    Transient storage of stream water and associated solutes is expected to vary along stream networks in response to related changes in stream hydraulic conditions and morphologic gradients. These spatial changes are relevant to a wide variety of processes (e.g., biogeochemical cycling), yet data regarding these dynamics are limited and almost exclusively confined to the general storage terms of transient storage models with a single-storage zone (1-SZ). We used a transient storage model with two-storage zones (2-SZ) to simulate field data from conservative solute injections conducted in a coastal stream network in Massachusetts to separately quantify surface transient storage (STS) and hyporheic transient storage (HTS). Solute tracer additions were performed at basin-wide, low-flow conditions, and results were compared with respect to stream size. Strong positive relationships with reach contributing area indicated that the size of the main channel and the size and residence time in surface and hyporheic storage zones all increased from small to large streams. Conversely, longitudinal dispersion and the storage zone exchange coefficients had no consistent trends downstream. The influence of storage exchange on median transport time ( $F_{MED}^{200}$) was consistently large for STS and negligible for HTS. When compared to 1-SZ model estimates, we found that the general 1-SZ model storage terms did not consistently describe either STS or HTS exchange. Overall our results indicated that many zone-specific (STS and HTS) storage dynamics were sensitive to the combination of hydraulic and morphologic gradients along the stream network and followed positive trends with stream size.
  • Article
    Residence time distributions in surface transient storage zones in streams : estimation via signal deconvolution
    (American Geophysical Union, 2011-05-11) Gooseff, Michael N. ; Benson, David A. ; Briggs, Martin A. ; Weaver, Mitchell ; Wollheim, Wilfred M. ; Peterson, Bruce J. ; Hopkinson, Charles S.
    Little is known about the impact of surface transient storage (STS) zones on reach-scale transport and the fate of dissolved nutrients in streams. Exchange with these locations may influence the rates of nutrient cycling often observed in whole-stream tracer experiments, particularly because they are sites of organic matter collection and lower flow velocities than those observed in the thalweg. We performed a conservative stream tracer experiment (slug of dissolved NaCl) in the Ipswich River in northeastern Massachusetts and collected solute tracer data both in the thalweg and adjacent STS zones at three locations in a fifth-order reach. Tracer time series observed in STS zones are an aggregate of residence time distributions (RTDs) of the upstream transport to that point (RTDTHAL) and that of the temporary storage within these zones (RTDSTS). Here we demonstrate the separation of these two RTDs to determine the RTDSTS specifically. Total residence times for these individual STS zones range from 4.5 to 7.5 h, suggesting that these zones have the potential to host important biogeochemical transformations in stream systems. All of the RTDSTS show substantial deviations from the ideal prescribed by the two-state (mobile/immobile) mass transfer equations. The deviations indicate a model mismatch and that parameter estimation based on the mass transfer equations will yield misleading values.
  • Article
    Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska : potential impacts on headwater stream ecosystems
    (American Geophysical Union, 2008-06-03) Bowden, William B. ; Gooseff, Michael N. ; Balser, A. ; Green, A. ; Peterson, Bruce J. ; Bradford, J.
    Permafrost is a defining characteristic of the Arctic environment. However, climate warming is thawing permafrost in many areas leading to failures in soil structure called thermokarst. An extensive survey of a 600 km2 area in and around the Toolik Lake Natural Research Area (TLNRA) revealed at least 34 thermokarst features, two thirds of which were new since ∼1980 when a high resolution aerial survey of the area was done. Most of these thermokarst features were associated with headwater streams or lakes. We have measured significantly increased sediment and nutrient loading from thermokarst features to streams in two well-studied locations near the TLNRA. One small thermokarst gully that formed in 2003 on the Toolik River in a 0.9 km2 subcatchment delivered more sediment to the river than is normally delivered in 18 years from 132 km2 in the adjacent upper Kuparuk River basin (a long-term monitoring reference site). Ammonium, nitrate, and phosphate concentrations downstream from a thermokarst feature on Imnavait Creek increased significantly compared to upstream reference concentrations and the increased concentrations persisted over the period of sampling (1999–2005). The downstream concentrations were similar to those we have used in a long-term experimental manipulation of the Kuparuk River and that have significantly altered the structure and function of that river. A subsampling of other thermokarst features from the extensive regional survey showed that concentrations of ammonium, nitrate, and phosphate were always higher downstream of the thermokarst features. Our previous research has shown that even minor increases in nutrient loading stimulate primary and secondary production. However, increased sediment loading could interfere with benthic communities and change the responses to increased nutrient delivery. Although the terrestrial area impacted by thermokarsts is limited, the aquatic habitat altered by these failures can be extensive. If warming in the Arctic foothills accelerates thermokarst formation, there may be substantial and wide-spread impacts on arctic stream ecosystems that are currently poorly understood.
  • Article
    Cross-site comparisons of dryland ecosystem response to climate change in the US long-term ecological research network
    (Oxford University Press, 2022-08-16) Hudson, Amy R. ; Peters, Debra P. C. ; Blair, John M. ; Childers, Daniel L. ; Doran, Peter T. ; Geil, Kerrie L. ; Gooseff, Michael N. ; Gross, Katherine ; Haddad, Nick M. ; Pastore, Melissa A. ; Rudgers, Jennifer A. ; Sala, Osvaldo E. ; Seabloom, Eric W. ; Shaver, Gaius R.
    Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.
  • Article
    Separation of river network–scale nitrogen removal among the main channel and two transient storage compartments
    (American Geophysical Union, 2011-08-30) Stewart, Robert J. ; Wollheim, Wilfred M. ; Gooseff, Michael N. ; Briggs, Martin A. ; Jacobs, Jennifer M. ; Peterson, Bruce J. ; Hopkinson, Charles S.
    Transient storage (TS) zones are important areas of dissolved inorganic nitrogen (DIN) processing in rivers. We assessed sensitivities regarding the relative impact that the main channel (MC), surface TS (STS), and hyporheic TS (HTS) have on network denitrification using a model applied to the Ipswich River in Massachusetts, United States. STS and HTS connectivity and size were parameterized using the results of in situ solute tracer studies in first- through fifth-order reaches. DIN removal was simulated in all compartments for every river grid cell using reactivity derived from Lotic Intersite Nitrogen Experiment (LINX2) studies, hydraulic characteristics, and simulated discharge. Model results suggest that although MC-to-STS connectivity is greater than MC-to-HTS connectivity at the reach scale, at basin scales, there is a high probability of water entering the HTS at some point along its flow path through the river network. Assuming our best empirical estimates of hydraulic parameters and reactivity, the MC, HTS, and STS removed approximately 38%, 21%, and 14% of total DIN inputs during a typical base flow period, respectively. There is considerable uncertainty in many of the parameters, particularly the estimates of reaction rates in the different compartments. Using sensitivity analyses, we found that the size of TS is more important for DIN removal processes than its connectivity with the MC when reactivity is low to moderate, whereas TS connectivity is more important when reaction rates are rapid. Our work suggests a network perspective is needed to understand how connectivity, residence times, and reactivity interact to influence DIN processing in hierarchical river systems.