Mickett John B.

No Thumbnail Available
Last Name
Mickett
First Name
John B.
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Microstructure mixing observations and finescale parameterizations in the Beaufort Sea
    (American Meteorological Society, 2020-12-22) Fine, Elizabeth C. ; Alford, Matthew H. ; MacKinnon, Jennifer A. ; Mickett, John B.
    In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
  • Article
    A tale of two spicy seas
    (The Oceanography Society, 2016-06) MacKinnon, Jennifer A. ; Nash, Jonathan D. ; Alford, Matthew H. ; Lucas, Andrew J. ; Mickett, John B. ; Shroyer, Emily L. ; Waterhouse, Amy F. ; Tandon, Amit ; Sengupta, Debasis ; Mahadevan, Amala ; Ravichandran, M. ; Pinkel, Robert ; Rudnick, Daniel L. ; Whalen, Caitlin B. ; Alberty, Marion S. ; Lekha, J. Sree ; Fine, Elizabeth C. ; Chaudhuri, Dipayan ; Wagner, Gregory L.
    Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean’s horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.
  • Article
    Observations of double diffusive staircase edges in the Arctic Ocean
    (American Geophysical Union, 2022-10-12) Boury, Samuel ; Supekar, Rohit ; Fine, Elizabeth C. ; Musgrave, Ruth C. ; Mickett, John B. ; Voet, Gunnar ; Odier, Philippe ; Peacock, Thomas ; MacKinnon, Jennifer A. ; Alford, Matthew H.
    Recent observational studies have provided detailed descriptions of double‐diffusive staircases in the Beaufort Sea, characterized by well‐mixed intrusions between high‐gradient interfaces. These structures result from double‐diffusive convection, occurring when cooler fresh water lies atop the warmer saltier Atlantic water layer. In the present study, we investigate the spatial structure of such layers, by analyzing combined high resolution data from a subsurface mooring, a ship‐towed profiling conductivity‐temperature‐depth/ADCP package, and a free‐falling microstructure profiler. At large scale, the modular microstructure profiler data suggest a horizontal “ragged edge” of the layered water masses near the basin boundary. At smaller scales, the mooring data indicate that, in the 300–400 m depth interval, regions of layers abruptly appear. This laterally sharp (of the order of 100 m) interface is advected southwards, as shown by the shallow water integrated mapping system survey conducted nearby. Neither disruption nor formation of layers is directly observed in our data, and we thus interpret our observations as the stable and possibly recent abutment of a layered and an unlayered water masses, now globally advected southwards by a large scale flow.
  • Article
    Flow-topography interactions in the Samoan Passage
    (Oceanography Society, 2019-12-11) Girton, James B. ; Mickett, John B. ; Zhao, Zhongxiang ; Alford, Matthew H. ; Voet, Gunnar ; Cusack, Jesse M. ; Carter, Glenn S. ; Pearson-Potts, Kelly A. ; Pratt, Lawrence J. ; Tan, Shuwen ; Klymak, Jody M.
    Mixing in the Samoan Passage has implications for the abyssal water properties of the entire North Pacific—nearly 20% of the global ocean’s volume. Dense bottom water formed near Antarctica encounters the passage—a gap in a ridge extending from north of Samoa eastward across the Pacific at around 10°S—and forms an energetic cascade much like a river flowing through a canyon. The 2011–2014 Samoan Passage Abyssal Mixing Experiment explored the importance of topography to the dense water flow on a wide range of scales, including (1) constraints on transport due to the overall passage shape and the heights of its multiple sills, (2) rapid changes in water properties along particular pathways at localized mixing hotspots where there is extreme topographic roughness and/or downslope flow acceleration, and (3) diversion and disturbance of flow pathways and density surfaces by small-scale seamounts and ridges. The net result is a complex but fairly steady picture of interconnected pathways with a limited number of intense mixing locations that determine the net water mass transformation. The implication of this set of circumstances is that the dominant features of Samoan Passage flow and mixing (and their responses to variations in incoming or background properties) can be described by the dynamics of a single layer of dense water flowing beneath a less-dense one, combined with mixing and transformation that is determined by the small-scale topography encountered along flow pathways.
  • Article
    A spatial geography of abyssal turbulent mixing in the Samoan passage
    (Oceanography Society, 2019-12-11) Carter, Glenn S. ; Voet, Gunnar ; Alford, Matthew H. ; Girton, James B. ; Mickett, John B. ; Klymak, Jody M. ; Pratt, Lawrence J. ; Pearson-Potts, Kelly A. ; Cusack, Jesse M. ; Tan, Shuwen
    High levels of turbulent mixing have long been suspected in the Samoan Passage, an important topographic constriction in the deep limb of the Pacific Meridional Overturning Circulation. Along the length of the passage, observations undertaken in 2012 and 2014 showed the bottom water warmed by ~55 millidegrees Celsius and decreased in density by 0.01 kg m–3. Spatial analysis of this first-ever microstructure survey conducted in the Samoan Passage confirmed there are multiple hotspots of elevated abyssal mixing. This mixing was not just confined to the four main sills—even between sills, the nature of the mixing processes appeared to differ: for example, one sill is clearly a classical hydraulically controlled overflow, whereas another is consistent with mode-2 hydraulic control. When microstructure casts were averaged into 0.1°C conservative temperature classes, the largest dissipation rates and diapycnal diffusivity values (>10–7 W kg–1 and 10–2 m2 s–1, respectively) occurred immediately downstream of the northern sill in the eastern and deepest channel. Although topographic blocking is the primary reason that no water colder than Θ = 0.7°C is found in the western channel, intensive mixing at the entrance sills appeared to be responsible for eroding an approximately 100 m thick layer of Θ < 0.7°C water. Three examples highlighting weak temporal variability, and hence suggesting that the observed spatial patterns are robust, are presented. The spatial variability in mixing over short lateral scales suggests that any simple parameterization of mixing within the Samoan Passage may not be applicable.
  • Article
    Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea
    (American Meteorological Society, 2022-02-01) Fine, Elizabeth C. ; MacKinnon, Jennifer A. ; Alford, Matthew H. ; Middleton, Leo ; Taylor, John R. ; Mickett, John B. ; Cole, Sylvia T. ; Couto, Nicole ; Le Boyer, Arnaud ; Peacock, Thomas
    Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background ε of less than 10−9 W kg−1. Based on the distribution of ε as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated ε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.
  • Article
    Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends
    (Copernicus Publications, 2019-03-26) Sutton, Adrienne J. ; Feely, Richard A. ; Maenner-Jones, Stacy ; Musielwicz, Sylvia ; Osborne, John ; Dietrich, Colin ; Monacci, Natalie ; Cross, Jessica N. ; Bott, Randy ; Kozyr, Alex ; Andersson, Andreas J. ; Bates, Nicholas R. ; Cai, Wei-Jun ; Cronin, Meghan F. ; De Carlo, Eric H. ; Hales, Burke ; Howden, Stephan D. ; Lee, Charity M. ; Manzello, Derek P. ; McPhaden, Michael J. ; Meléndez, Melissa ; Mickett, John B. ; Newton, Jan A. ; Noakes, Scott ; Noh, Jae Hoon ; Olafsdottir, Solveig R. ; Salisbury, Joseph E. ; Send, Uwe ; Trull, Thomas W. ; Vandemark, Douglas ; Weller, Robert A.
    Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9±0.3 and 1.6±0.3 µatm yr−1, respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https://doi.org/10.7289/V5DB8043 and https://www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html (Sutton et al., 2018).