Jackson Darrell R.

No Thumbnail Available
Last Name
Jackson
First Name
Darrell R.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited
    (Acoustical Society of America, 2017-03-03) Xu, Guangyu ; Jackson, Darrell R. ; Bemis, Karen G.
    The relative importance of suspended particles and turbulence as backscattering mechanisms within a hydrothermal plume located on the Endeavour Segment of the Juan de Fuca Ridge is determined by comparing acoustic backscatter measured by the Cabled Observatory Vent Imaging Sonar (COVIS) with model calculations based on in situ samples of particles suspended within the plume. Analysis of plume samples yields estimates of the mass concentration and size distribution of particles, which are used to quantify their contribution to acoustic backscatter. The result shows negligible effects of plume particles on acoustic backscatter within the initial 10-m rise of the plume. This suggests turbulence-induced temperature fluctuations are the dominant backscattering mechanism within lower levels of the plume. Furthermore, inversion of the observed acoustic backscatter for the standard deviation of temperature within the plume yields a reasonable match with the in situ temperature measurements made by a conductivity-temperature-depth instrument. This finding shows that turbulence-induced temperature fluctuations are the dominant backscattering mechanism and demonstrates the potential of using acoustic backscatter as a remote-sensing tool to measure the temperature variability within a hydrothermal plume.
  • Article
    High-frequency bistatic scattering by sub-bottom gas bubbles
    (Acoustical Society of America, 1997-08) Chu, Dezhang ; Williams, Kevin L. ; Tang, Dajun ; Jackson, Darrell R.
    A previous study of high-frequency acoustic backscattering data collected at Eckernfoerde Bay, Germany revealed that scattering is mainly due to methane gas bubbles buried about a meter beneath the seafloor [Tang et al., J. Acoust. Soc. Am. 96, 2930–2936 (1994)]. A backscattering model was developed [Tang, Geo-Marine Lett. 16, 161–169 (1996)] where the gas bubbles were approximated by oblate spheroids. In this paper, a bistatic scattering model is proposed as an extension of the previously developed backscattering model. In this model, gas bubbles are again assumed to be oblate spheroids with varying aspect ratios and a single-scattering approximation is used. The model is compared to bistatic data acquired in Eckernfoerde Bay, Germany. In particular, the azimuthal dependence of the bistatic scattering strength predicted by the model is tested against experimental data and it is found that both the model and the bistatic scattering strength data exhibit a mild azimuthal dependence. Best agreement between model and data requires a 35% reduction in areal bubble density relative to that used in the backscattering model/data comparison. Possible reasons for this are discussed including multiple scattering effects.