Middelburg Jack J.

No Thumbnail Available
Last Name
First Name
Jack J.

Search Results

Now showing 1 - 3 of 3
  • Article
    Soothsaying DOM: A current perspective on the future of oceanic dissolved organic carbon
    (Frontiers Media, 2020-05-25) Wagner, Sasha ; Schubotz, Florence ; Kaiser, Karl ; Hallmann, Christian ; Waska, Hannelore ; Rossel, Pamela ; Hansman, Roberta L. ; Elvert, Marcus ; Middelburg, Jack J. ; Engel, Anja ; Blattmann, Thomas M. ; Catalá, Teresa S. ; Lennartz, Sinikka T. ; Gomez-Saez, Gonzalo V. ; Pantoja-Gutiérrez, Silvio ; Bao, Rui ; Galy, Valier
    The vast majority of freshly produced oceanic dissolved organic carbon (DOC) is derived from marine phytoplankton, then rapidly recycled by heterotrophic microbes. A small fraction of this DOC survives long enough to be routed to the interior ocean, which houses the largest and oldest DOC reservoir. DOC reactivity depends upon its intrinsic chemical composition and extrinsic environmental conditions. Therefore, recalcitrance is an emergent property of DOC that is analytically difficult to constrain. New isotopic techniques that track the flow of carbon through individual organic molecules show promise in unveiling specific biosynthetic or degradation pathways that control the metabolic turnover of DOC and its accumulation in the deep ocean. However, a multivariate approach is required to constrain current carbon fluxes so that we may better predict how the cycling of oceanic DOC will be altered with continued climate change. Ocean warming, acidification, and oxygen depletion may upset the balance between the primary production and heterotrophic reworking of DOC, thus modifying the amount and/or composition of recalcitrant DOC. Climate change and anthropogenic activities may enhance mobilization of terrestrial DOC and/or stimulate DOC production in coastal waters, but it is unclear how this would affect the flux of DOC to the open ocean. Here, we assess current knowledge on the oceanic DOC cycle and identify research gaps that must be addressed to successfully implement its use in global scale carbon models.
  • Preprint
    Archaeal nitrification in the ocean
    ( 2006-01-30) Wuchter, Cornelia ; Abbas, Ben ; Coolen, Marco J. L. ; Herfort, Lydie ; van Bleijswijk, Judith ; Timmers, Peer ; Strous, Marc ; Teira, Eva ; Herndl, Gerhard J. ; Middelburg, Jack J. ; Schouten, Stefan ; Sinninghe Damste, Jaap S.
    Marine Crenarchaeota are the most abundant single group of prokaryotes in the ocean but their physiology and role in marine biogeochemical cycles are unknown. Recently, a member of this clade was isolated from a sea aquarium and shown to be capable of nitrification, tentatively suggesting that they may play a role in the oceanic nitrogen cycle. We enriched a crenarchaeote from North Sea water and show that it oxidizes ammonium to nitrite. A time series study in the North Sea revealed that the abundance of the gene encoding for the archaeal ammonia monooxygenase alfa subunit (amoA) is correlated with the decline in ammonium concentrations and with the abundance of Crenarcheota. Remarkably, the archaeal amoA abundance was 1-2 orders of magnitude higher than those of bacterial nitrifiers which are commonly thought to mediate the oxidation of ammonium to nitrite in marine environments. Analysis of Atlantic waters of the upper 1000 m, where most of the ammonium regeneration and oxidation takes place, showed that crenarchaeotal amoA copy numbers are also one to three orders of magnitude higher than those of bacterial amoA. Our data thus suggest a major role for Archaea in oceanic nitrification.
  • Article
    Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record
    (Copernicus Publications on behalf of the European Geosciences Union, 2010-02-05) Zonneveld, K. A. F. ; Versteegh, G. J. M. ; Kasten, S. ; Eglinton, Timothy I. ; Emeis, Kay-Christian ; Huguet, Carme ; Koch, Boris P. ; de Lange, Gert J. ; de Leeuw, J. W. ; Middelburg, Jack J. ; Mollenhauer, Gesine ; Prahl, Fredrick G. ; Rethemeyer, J. ; Wakeham, Stuart G.
    The present paper is the result of a workshop sponsored by the DFG Research Center/Cluster of Excellence MARUM "The Ocean in the Earth System", the International Graduate College EUROPROX, and the Alfred Wegener Institute for Polar and Marine Research. The workshop brought together specialists on organic matter degradation and on proxy-based environmental reconstruction. The paper deals with the main theme of the workshop, understanding the impact of selective degradation/preservation of organic matter (OM) in marine sediments on the interpretation of the fossil record. Special attention is paid to (A) the influence of the molecular composition of OM in relation to the biological and physical depositional environment, including new methods for determining complex organic biomolecules, (B) the impact of selective OM preservation on the interpretation of proxies for marine palaeoceanographic and palaeoclimatic reconstruction, and (C) past marine productivity and selective preservation in sediments. It appears that most of the factors influencing OM preservation have been identified, but many of the mechanisms by which they operate are partly, or even fragmentarily, understood. Some factors have not even been taken carefully into consideration. This incomplete understanding of OM breakdown hampers proper assessment of the present and past carbon cycle as well as the interpretation of OM based proxies and proxies affected by OM breakdown. To arrive at better proxy-based reconstructions "deformation functions" are needed, taking into account the transport and diagenesis-related molecular and atomic modifications following proxy formation. Some emerging proxies for OM degradation may shed light on such deformation functions. The use of palynomorph concentrations and selective changes in assemblage composition as models for production and preservation of OM may correct for bias due to selective degradation. Such quantitative assessment of OM degradation may lead to more accurate reconstruction of past productivity and bottom water oxygenation. Given the cost and effort associated with programs to recover sediment cores for paleoclimatological studies, as well as with generating proxy records, it would seem wise to develop a detailed sedimentological and diagenetic context for interpretation of these records. With respect to the latter, parallel acquisition of data that inform on the fidelity of the proxy signatures and reveal potential diagenetic biases would be of clear value.