Chafee Meghan E.

No Thumbnail Available
Last Name
Chafee
First Name
Meghan E.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Recurrent patterns of microdiversity in a temperate coastal marine environment
    (Nature Publishing Group, 2017-10-24) Chafee, Meghan E. ; Fernàndez-Guerra, Antonio ; Buttigieg, Pier Luigi ; Gerdts, Gunnar ; Eren, A. Murat ; Teeling, Hanno ; Amann, Rudolf I.
    Temperate coastal marine environments are replete with complex biotic and abiotic interactions that are amplified during spring and summer phytoplankton blooms. During these events, heterotrophic bacterioplankton respond to successional releases of dissolved organic matter as algal cells are lysed. Annual seasonal shifts in the community composition of free-living bacterioplankton follow broadly predictable patterns, but whether similar communities respond each year to bloom disturbance events remains unknown owing to a lack of data sets, employing high-frequency sampling over multiple years. We capture the fine-scale microdiversity of these events with weekly sampling using a high-resolution method to discriminate 16S ribosomal RNA gene amplicons that are >99% identical. Furthermore, we used 2 complete years of data to facilitate identification of recurrent sub-networks of co-varying microbes. We demonstrate that despite inter-annual variation in phytoplankton blooms and despite the dynamism of a coastal–oceanic transition zone, patterns of microdiversity are recurrent during both bloom and non-bloom conditions. Sub-networks of co-occurring microbes identified reveal that correlation structures between community members appear quite stable in a seasonally driven response to oligotrophic and eutrophic conditions.
  • Article
    Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities
    (American Society for Microbiology, 2014-01-21) Maignien, Lois ; DeForce, Emelia A. ; Chafee, Meghan E. ; Eren, A. Murat ; Simmons, Sheri L.
    Bacteria living on the aerial parts of plants (the phyllosphere) are globally abundant and ecologically significant communities and can have significant effects on their plant hosts. Despite their importance, little is known about the ecological processes that drive phyllosphere dynamics. Here, we describe the development of phyllosphere bacterial communities over time on the model plant Arabidopsis thaliana in a controlled greenhouse environment. We used a large number of replicate plants to identify repeatable dynamics in phyllosphere community assembly and reconstructed assembly history by measuring the composition of the airborne community immigrating to plant leaves. We used more than 260,000 sequences from the v5v6 hypervariable region of the 16S rRNA gene to characterize bacterial community structure on 32 plant and 21 air samples over 73 days. We observed strong, reproducible successional dynamics: phyllosphere communities initially mirrored airborne communities and subsequently converged to a distinct community composition. While the presence or absence of particular taxa in the phyllosphere was conserved across replicates, suggesting strong selection for community composition, the relative abundance of these taxa was highly variable and related to the spatial association of individual plants. Our results suggest that stochastic events in early colonization, coupled with dispersal limitation, generated alternate trajectories of bacterial community assembly within the context of deterministic selection for community membership.