O’Neil Gregory W.

No Thumbnail Available
Last Name
First Name
Gregory W.

Search Results

Now showing 1 - 6 of 6
  • Article
    Alkenones as a promising green alternative for waxes in cosmetics and personal care products
    (MDPI AG, 2018-06-05) McIntosh, Kyle ; Smith, Amber ; Young, Lisa K. ; Leitch, Michael A. ; Tiwari, Amit K. ; Reddy, Christopher M. ; O’Neil, Gregory W. ; Liberatore, Matthew W. ; Chandler, Mark ; Baki, Gabriella
    The move toward green, sustainable, natural products has been growing in the cosmetic and personal care industry. Ingredients derived from marine organisms and algae are present in many cosmetic products. In this study, a new green ingredient, a wax (i.e., long-chain alkenones) derived from Isochyrsis sp., was evaluated as an alternative for cosmetic waxes. First, the melting point was determined (71.1–77.4 °C), then the alkenones’ thickening capability in five emollients was evaluated and compared to microcrystalline wax and ozokerite. Alkenones were compatible with three emollients and thickened the emollients similarly to the other waxes. Then, lipsticks and lip balms were formulated with and without alkenones. All products remained stable at room temperature for 10 weeks. Lipstick formulated with alkenones was the most resistant to high temperature. Finally, alkenones were compared to three cosmetic thickening waxes in creams. Viscosity, rheology, and stability of the creams were evaluated. All creams had a gel-like behavior. Both viscosity and storage modulus increased in the same order: cream with alkenones < cetyl alcohol < stearic acid < glyceryl monostearate. Overall, alkenones’ performance was comparable to the other three waxes. Alkenones can thus offer a potential green choice as a new cosmetic structuring agent.
  • Article
    Evaluation of alkenones, a renewably sourced, plant-derived wax as a structuring agent for lipsticks
    (Wiley, 2019-12-27) Huynh, An ; Maktabi, Briana ; Reddy, Christopher M. ; O’Neil, Gregory W. ; Chandler, Mark ; Baki, Gabriella
    OBJECTIVE Waxes are used as structuring agents in lipsticks. There are a variety of waxes combined in a single lipstick to provide good stability, pleasant texture and good pay‐off. Due to a significant growth for natural, green and sustainable products, there is a constant search for alternatives to animal‐derived and petroleum‐derived ingredients. In this study, a green, non‐animalderived wax, namely long‐chain ketones (referred to as alkenones), sourced from marine microalgae was formulated into lipsticks and evaluated as a structuring agent. METHODS Alkenones were used as a substitute for microcrystalline wax, ozokerite and candelilla wax, typical structuring agents. In total, 384 lipsticks were formulated: L1 (control, no alkenones), L2 (alkenones as a substitute for ozokerite), L3 (alkenones as a substitute for microcrystalline wax) and L4 (alkenones as a substitute for candelilla wax). Products were tested for hardness (bending force), stiffness, firmness (needle penetration), pay‐off (using a texture analyser and a consumer panel), friction, melting point and stability for 12 weeks at 25 and 45°C. RESULTS Alkenones influenced each characteristic evaluated. In general, lipsticks with alkenones (L2‐L4) became softer and easier to bend compared to the control (L1). In terms of firmness, lipsticks were similar to the control, except for L4, which was significantly (P < 0.05) firmer. The effect on pay‐off was not consistent. L2 and L3 had higher pay‐off to skin and fabric than L1. In addition, L4 had the lowest amount transferred, but it still had the highest colour intensity on skin. Alkenones influenced friction (glide) positively; the average friction decreased for L2‐L4. The lowest friction (i.e. best glide) was shown in L4. Melting point of the lipsticks was lower when alkenones were present. Overall, L4, containing 7% of 4 alkenones in combination with microcrystalline wax, ozokerite and carnauba wax, was found to have the most desirable attributes, including ease of bending, high level of firmness, low pay‐off in terms of amount, high colour intensity on skin and low friction (i.e. better glide). Consumers preferred L4 the most overall. CONCLUSION Results of this study indicate that alkenones offer a sustainable, non‐animal and non‐petroleum‐derived choice as a structuring agent for lipsticks.
  • Preprint
    Decolorization improves the fuel properties of algal biodiesel from Isochrysis sp.
    ( 2016-03) O’Neil, Gregory W. ; Knothe, Gerhard ; Williams, John R. ; Burlow, Noah P. ; Reddy, Christopher M.
    Results from the comprehensive fuel testing according to American Society for Testing and Materials International (ASTM) standards of an alkenone-free and decolorized biodiesel produced from the industrially grown marine microalgae Isochrysis sp. are presented. Fatty acid methyl ester (FAME) profiles of the non-decolorized and subsequently decolorized biodiesel fuels were nearly identical, yet the fuel properties were remarkably different. Significant positive impacts on the cetane number, kinematic viscosity, and lubricity were observed, indicating a potential deleterious effect of pigments like chlorophylls and pheophytins on these fuel properties. The decolorization process using montmorillonite K10 gave on average 90% mass recovery, and allowed for an otherwise unobtainable cloud point determination. Oxidative stability of the decolorized Isochrysis biodiesel remained well below the minimum prescribed in biodiesel standards due to elevated content of highly polyunsaturated fatty acids, however other values were in the range of those prescribed in the ASTM standards. Overall, decolorization improved the fuel properties of biodiesel from Isochrysis and may provide a path toward improved biodiesel fuels from other algal species.
  • Article
    Production of two highly abundant 2-methyl-branched fatty acids by blooms of the globally significant marine cyanobacteria Trichodesmium erythraeum
    (American Chemical Society, 2021-08-26) Gosselin, Kelsey M. ; Nelson, Robert K. ; Spivak, Amanda C. ; Sylva, Sean P. ; Van Mooy, Benjamin A. S. ; Aeppli, Christoph ; Sharpless, Charles M. ; O’Neil, Gregory W. ; Arrington, Eleanor C. ; Reddy, Christopher M. ; Valentine, David L.
    The bloom-forming cyanobacteria Trichodesmium contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of Trichodesmium erythraeum. These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid. The high abundance and unusual branching pattern of these compounds suggest that they may play a specific role in this globally important organism.
  • Preprint
    Accessing monomers, surfactants, and the queen bee substance by acrylate cross-metathesis of long-chain alkenones
    ( 2017-05) O’Neil, Gregory W. ; Williams, John R. ; Craig, Alexander M. ; Nelson, Robert K. ; Gosselin, Kelsey M. ; Reddy, Christopher M.
    Polyunsaturated long-chain alkenones are a unique class of lipids biosynthesized in significant quantities (up to 20% of cell carbon) by several algae including the industrially grown marine microalgae Isochrysis. Alkenone structures are characterized by a long linear carbon-chain (35-40 carbons) with one to four trans-double bonds and terminating in a methyl or ethyl ketone. Alkenones were extracted and isolated from commercially obtained Isochrysis biomass and then subjected to cross-metathesis (CM) with methyl acrylate or acrylic acid using the Hoveyda-Grubbs metathesis initiator. Within 1 h at room temperature alkenones were consumed, however complete fragmentation (i.e. conversion to the smallest subunits by double bond cleavage) required up to 16 h. Analysis of the reaction mixture by gas chromatography and comprehensive two-dimensional gas chromatography revealed a predictable product mixture consisting primarily of long-chain (mostly C17) acids (or methyl esters from CM with methyl acrylate) and diacids (or diesters), along with smaller amounts (~5%) of the honey bee “queen substance” (E)-9-oxo-decenoic acid. Together, these compounds comprise a diverse mixture of valuable chemicals that includes surfactants, monomers, and an agriculturally relevant bee pheromone.
  • Article
    Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial Isochrysis algal biomass
    (JoVE, 2016-06-24) O’Neil, Gregory W. ; Williams, John R. ; Wilson-Peltier, Julia ; Knothe, Gerhard ; Reddy, Christopher M.
    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product.