Pinkel Robert

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 11 of 11
  • Article
    Submesoscale processes at shallow salinity fronts in the Bay of Bengal : observations during the winter monsoon
    (American Meteorological Society, 2018-02-26) Ramachandran, Sanjiv ; Tandon, Amit ; MacKinnon, Jennifer A. ; Lucas, Andrew J. ; Pinkel, Robert ; Waterhouse, Amy F. ; Nash, Jonathan D. ; Shroyer, Emily L. ; Mahadevan, Amala ; Weller, Robert A. ; Farrar, J. Thomas
    Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.
  • Article
    Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate
    (American Meteorological Society, 2014-07) Waterhouse, Amy F. ; MacKinnon, Jennifer A. ; Nash, Jonathan D. ; Alford, Matthew H. ; Kunze, Eric ; Simmons, Harper L. ; Polzin, Kurt L. ; St. Laurent, Louis C. ; Sun, Oliver M. T. ; Pinkel, Robert ; Talley, Lynne D. ; Whalen, Caitlin B. ; Huussen, Tycho N. ; Carter, Glenn S. ; Fer, Ilker ; Waterman, Stephanie N. ; Naveira Garabato, Alberto C. ; Sanford, Thomas B. ; Lee, Craig M.
    The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
  • Preprint
    The formation and fate of internal waves in the South China Sea
    ( 2015-03) Alford, Matthew H. ; Peacock, Thomas ; MacKinnon, Jennifer A. ; Nash, Jonathan D. ; Buijsman, Maarten C. ; Centurioni, Luca R. ; Chao, Shenn-Yu ; Chang, Ming-Huei ; Farmer, David M. ; Fringer, Oliver B. ; Fu, Ke-Hsien ; Gallacher, Patrick C. ; Graber, Hans C. ; Helfrich, Karl R. ; Jachec, Steven M. ; Jackson, Christopher R. ; Klymak, Jody M. ; Ko, Dong S. ; Jan, Sen ; Johnston, T. M. Shaun ; Legg, Sonya ; Lee, I-Huan ; Lien, Ren-Chieh ; Mercier, Matthieu J. ; Moum, James N. ; Musgrave, Ruth C. ; Park, Jae-Hun ; Pickering, Andrew I. ; Pinkel, Robert ; Rainville, Luc ; Ramp, Steven R. ; Rudnick, Daniel L. ; Sarkar, Sutanu ; Scotti, Alberto ; Simmons, Harper L. ; St Laurent, Louis C. ; Venayagamoorthy, Subhas K. ; Wang, Yu-Huai ; Wang, Joe ; Yang, Yiing-Jang ; Paluszkiewicz, Theresa ; Tang, Tswen Yung
    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they impact a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for manmade structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, posing severe challenges for their observation and their inclusion in numerical climate models, which are sensitive to their effects6-7. Over a decade of studies8-11 have targeted the South China Sea, where the oceans’ most powerful internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their generation mechanism, variability and energy budget, however, due to the lack of in-situ data from the Luzon Strait, where extreme flow conditions make measurements challenging. Here we employ new observations and numerical models to (i) show that the waves begin as sinusoidal disturbances rather than from sharp hydraulic phenomena, (ii) reveal the existence of >200-m-high breaking internal waves in the generation region that give rise to turbulence levels >10,000 times that in the open ocean, (iii) determine that the Kuroshio western boundary current significantly refracts the internal wave field emanating from the Luzon Strait, and (iv) demonstrate a factor-of-two agreement between modelled and observed energy fluxes that enables the first observationally-supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.
  • Article
    A tale of two spicy seas
    (The Oceanography Society, 2016-06) MacKinnon, Jennifer A. ; Nash, Jonathan D. ; Alford, Matthew H. ; Lucas, Andrew J. ; Mickett, John B. ; Shroyer, Emily L. ; Waterhouse, Amy F. ; Tandon, Amit ; Sengupta, Debasis ; Mahadevan, Amala ; Ravichandran, M. ; Pinkel, Robert ; Rudnick, Daniel L. ; Whalen, Caitlin B. ; Alberty, Marion S. ; Lekha, J. Sree ; Fine, Elizabeth C. ; Chaudhuri, Dipayan ; Wagner, Gregory L.
    Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean’s horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.
  • Article
    Adrift upon a salinity-stratified sea : a view of upper-ocean processes in the Bay of Bengal during the southwest monsoon
    (The Oceanography Society, 2016-06) Lucas, Andrew J. ; Nash, Jonathan D. ; Pinkel, Robert ; MacKinnon, Jennifer A. ; Tandon, Amit ; Mahadevan, Amala ; Omand, Melissa M. ; Freilich, Mara ; Sengupta, Debasis ; Ravichandran, M. ; Le Boyer, Arnaud
    The structure and variability of upper-ocean properties in the Bay of Bengal (BoB) modulate air-sea interactions, which profoundly influence the pattern and intensity of monsoonal precipitation across the Indian subcontinent. In turn, the bay receives a massive amount of freshwater through river input at its boundaries and from heavy local rainfall, leading to a salinity-stratified surface ocean and shallow mixed layers. Small-scale oceanographic processes that drive variability in near-surface BoB waters complicate the tight coupling between ocean and atmosphere implicit in this seasonal feedback. Unraveling these ocean dynamics and their impact on air-sea interactions is critical to improving the forecasting of intraseasonal variability in the southwest monsoon. To that end, we deployed a wave-powered, rapidly profiling system capable of measuring the structure and variability of the upper 100 m of the BoB. The evolution of upper-ocean structure along the trajectory of the instrument’s roughly two-week drift, along with direct estimates of vertical fluxes of salt and heat, permit assessment of the contributions of various phenomena to temporal and spatial variability in the surface mixed layer depth. Further, these observations suggest that the particular “barrier-layer” stratification found in the BoB may decrease the influence of the wind on mixing processes in the interior, thus isolating the upper ocean from the interior below, and tightening its coupling to the atmosphere above.
  • Article
    Parametric subharmonic instability of the internal tide at 29°N
    (American Meteorological Society, 2013-01) MacKinnon, Jennifer A. ; Alford, Matthew H. ; Sun, Oliver M. T. ; Pinkel, Robert ; Zhao, Zhongxiang ; Klymak, Jody M.
    Observational evidence is presented for transfer of energy from the internal tide to near-inertial motions near 29°N in the Pacific Ocean. The transfer is accomplished via parametric subharmonic instability (PSI), which involves interaction between a primary wave (the internal tide in this case) and two smaller-scale waves of nearly half the frequency. The internal tide at this location is a complex superposition of a low-mode waves propagating north from Hawaii and higher-mode waves generated at local seamounts, making application of PSI theory challenging. Nevertheless, a statistically significant phase locking is documented between the internal tide and upward- and downward-propagating near-inertial waves. The phase between those three waves is consistent with that expected from PSI theory. Calculated energy transfer rates from the tide to near-inertial motions are modest, consistent with local dissipation rate estimates. The conclusion is that while PSI does befall the tide near a critical latitude of 29°N, it does not do so catastrophically.
  • Article
    Subharmonic energy transfer from the semidiurnal internal tide to near-diurnal motions over Kaena Ridge, Hawaii
    (American Meteorological Society, 2013-04) Sun, Oliver M. T. ; Pinkel, Robert
    Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program. Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m. The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.
  • Article
    Climate Process Team on internal wave–driven ocean mixing
    (American Meteorological Society, 2017-12-01) MacKinnon, Jennifer A. ; Zhao, Zhongxiang ; Whalen, Caitlin B. ; Waterhouse, Amy F. ; Trossman, David S. ; Sun, Oliver M. ; St. Laurent, Louis C. ; Simmons, Harper L. ; Polzin, Kurt L. ; Pinkel, Robert ; Pickering, Andrew I. ; Norton, Nancy J. ; Nash, Jonathan D. ; Musgrave, Ruth C. ; Merchant, Lynne M. ; Melet, Angelique ; Mater, Benjamin D. ; Legg, Sonya ; Large, William G. ; Kunze, Eric ; Klymak, Jody M. ; Jochum, Markus ; Jayne, Steven R. ; Hallberg, Robert ; Griffies, Stephen M. ; Diggs, Stephen ; Danabasoglu, Gokhan ; Chassignet, Eric P. ; Buijsman, Maarten C. ; Bryan, Frank O. ; Briegleb, Bruce P. ; Barna, Andrew ; Arbic, Brian K. ; Ansong, Joseph ; Alford, Matthew H.
    Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.
  • Article
    Direct breaking of the internal tide near topography : Kaena Ridge, Hawaii
    (American Meteorological Society, 2008-02) Klymak, Jody M. ; Pinkel, Robert ; Rainville, Luc
    Barotropic to baroclinic conversion and attendant phenomena were recently examined at the Kaena Ridge as an aspect of the Hawaii Ocean Mixing Experiment. Two distinct mixing processes appear to be at work in the waters above the 1100-m-deep ridge crest. At middepths, above 400 m, mixing events resemble their open-ocean counterparts. There is no apparent modulation of mixing rates with the fortnightly cycle, and they are well modeled by standard open-ocean parameterizations. Nearer to the topography, there is quasi-deterministic breaking associated with each baroclinic crest passage. Large-amplitude, small-scale internal waves are triggered by tidal forcing, consistent with lee-wave formation at the ridge break. These waves have vertical wavelengths on the order of 400 m. During spring tides, the waves are nonlinear and exhibit convective instabilities on their leading edge. Dissipation rates exceed those predicted by the open-ocean parameterizations by up to a factor of 100, with the disparity increasing as the seafloor is approached. These observations are based on a set of repeated CTD and microconductivity profiles obtained from the research platform (R/P) Floating Instrument Platform (FLIP), which was trimoored over the southern edge of the ridge crest. Ocean velocity and shear were resolved to a 4-m vertical scale by a suspended Doppler sonar. Dissipation was estimated both by measuring overturn displacements and from microconductivity wavenumber spectra. The methods agreed in water deeper than 200 m, where sensor resolution limitations do not limit the turbulence estimates. At intense mixing sites new phenomena await discovery, and existing parameterizations cannot be expected to apply.
  • Article
    ASIRI : an ocean–atmosphere initiative for Bay of Bengal
    (American Meteorological Society, 2016-11-22) Wijesekera, Hemantha W. ; Shroyer, Emily L. ; Tandon, Amit ; Ravichandran, M. ; Sengupta, Debasis ; Jinadasa, S. U. P. ; Fernando, Harindra J. S. ; Agrawal, Neeraj ; Arulananthan, India K. ; Bhat, G. S. ; Baumgartner, Mark F. ; Buckley, Jared ; Centurioni, Luca R. ; Conry, Patrick ; Farrar, J. Thomas ; Gordon, Arnold L. ; Hormann, Verena ; Jarosz, Ewa ; Jensen, Tommy G. ; Johnston, T. M. Shaun ; Lankhorst, Matthias ; Lee, Craig M. ; Leo, Laura S. ; Lozovatsky, Iossif ; Lucas, Andrew J. ; MacKinnon, Jennifer A. ; Mahadevan, Amala ; Nash, Jonathan D. ; Omand, Melissa M. ; Pham, Hieu ; Pinkel, Robert ; Rainville, Luc ; Ramachandran, Sanjiv ; Rudnick, Daniel L. ; Sarkar, Sutanu ; Send, Uwe ; Sharma, Rashmi ; Simmons, Harper L. ; Stafford, Kathleen M. ; St. Laurent, Louis C. ; Venayagamoorthy, Subhas K. ; Venkatesan, Ramasamy ; Teague, William J. ; Wang, David W. ; Waterhouse, Amy F. ; Weller, Robert A. ; Whalen, Caitlin B.
    Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.
  • Article
    Energy transfer from high-shear, low-frequency internal waves to high-frequency waves near Kaena Ridge, Hawaii
    (American Meteorological Society, 2012-09) Sun, Oliver M. T. ; Pinkel, Robert
    Evidence is presented for the transfer of energy from low-frequency inertial–diurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those receiving energy directly from the winds, barotropic tides, and parametric subharmonic instability, with those most directly involved in the breaking process. Transfer estimates are based on month-long records of ocean velocity and temperature obtained continuously over 80–800 m from the research platform (R/P) Floating Instrument Platform (FLIP) in the Hawaii Ocean Mixing Experiment (HOME) Nearfield (2002) and Farfield (2001) experiments, in Hawaiian waters. Triple correlations between low-frequency vertical shears and high-frequency Reynolds stresses, uiw∂Ui/∂z, are used to estimate energy transfers. These are supported by bispectral analysis, which show significant energy transfers to pairs of waves with nearly identical frequency. Wavenumber bispectra indicate that the vertical scales of the high-frequency waves are unequal, with one wave of comparable scale to that of the low-frequency parent and the other of much longer scale. The scales of the high-frequency waves contrast with the classical pictures of induced diffusion and elastic scattering interactions and violates the scale-separation assumption of eikonal models of interaction. The possibility that the observed waves are Doppler shifted from intrinsic frequencies near f or N is explored. Peak transfer rates in the Nearfield, an energetic tidal conversion site, are on the order of 2 × 10−7 W kg−1 and are of similar magnitude to estimates of turbulent dissipation that were made near the ridge during HOME. Transfer rates in the Farfield are found to be about half the Nearfield values.