Ono Shuhei

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 11 of 11
  • Preprint
    Experimental investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial methane
    ( 2018-06-14) Gruen, Danielle S. ; Wang, David T. ; Könneke, Martin ; Topçuoğlu, Begüm D ; Stewart, Lucy C. ; Goldhammer, Tobias ; Holden, James F. ; Hinrichs, Kai-Uwe ; Ono, Shuhei
    The abundance of methane isotopologues with two rare isotopes (e.g., 13CH3D) has been proposed as a tool to estimate the temperature at which methane is formed or thermally equilibrated. It has been shown, however, that microbial methane from surface environments and from laboratory cultures is characterized by low 13CH3D abundance, corresponding to anomalously high apparent 13CH3D equilibrium temperatures. We carried out a series of batch culture experiments to investigate the origin of the non-equilibrium signals in microbial methane by exploring a range of metabolic pathways, growth temperatures, and hydrogen isotope compositions of the media. We found that thermophilic methanogens (Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Methanocaldococcus bathoardescens) grown on H2+CO2 at temperatures between 60 and 80°C produced methane with Δ13CH3D values (defined as the deviation from stochastic abundance) of 0.5 to 2.5‰, corresponding to apparent 13CH3D equilibrium temperatures of 200 to 600°C. Mesophilic methanogens (Methanosarcina barkeri and Methanosarcina mazei) grown on H2+CO2, acetate, or methanol produced methane with consistently low Δ13CH3D values, down to -5.2‰. Closed system effects can explain part of the non-equilibrium signals for methane from thermophilic methanogens. Experiments with M. barkeri using D-spiked water or D-labeled acetate (CD3COO-) indicate that 1.6 to 1.9 out of four H atoms in methane originate from water, but Δ13CH3D values of product methane only weakly correlate with the D/H ratio of medium water. Our experimental results demonstrate that low Δ13CH3D values are not specific to the metabolic pathways of methanogenesis, suggesting that they could be produced during enzymatic reactions common in the three methanogenic pathways, such as the reduction of methyl-coenzyme M. Nonetheless C-H bonds inherited from precursor methyl groups may also carry part of non-equilibrium signals.
  • Preprint
    S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides
    ( 2006-11-14) Ono, Shuhei ; Shanks, Wayne C. ; Rouxel, Olivier J. ; Rumble, Douglas
    Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different Δ33S (≡ δ33S – 0.515 δ34S) values of up to 0.04 ‰ even if δ34S values are identical. Detection of such small Δ33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006 ‰ (2σ). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10° N, 13° N, and 21° S and Mid-Atlantic Ridge (MAR) 37° N yield Δ33S values ranging from –0.002 to 0.033 and δ34S from –0.5 to 5.3 ‰. The combined δ34S and Δ33S systematics reveal that 73 to 89 % of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27 % from seawater-derived sulfate. Pyrite from EPR 13° N and marcasite from MAR 37° N are in isotope disequilibrium not only in δ34S but also in Δ33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low Δ33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles.
  • Preprint
    Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801
    ( 2008-01-08) Rouxel, Olivier J. ; Ono, Shuhei ; Alt, Jeffrey C. ; Rumble, Douglas ; Ludden, John
    The subsurface biosphere in the basaltic ocean crust is potentially of major importance in affecting chemical exchange between the ocean and lithosphere. Alteration of the oceanic crust commonly yields secondary pyrite that are depleted in 34S relative to igneous sulfides. Although these 34S depleted sulfur isotope ratios may point to signatures of biological fractionation, previous interpretations of sulfur isotope fractionation in altered volcanic rocks have relied on abiotic fractionation processes between intermediate sulfur species formed during basalt alteration. Here, we report results for multiple-S isotope (32S,33S,34S) compositions of altered basalts at ODP Site 801 in the western Pacific and provide evidence for microbial sulfate reduction within the volcanic oceanic crust. In-situ ion-microprobe analyses of secondary pyrite in basement rocks show a large range of δ34S values, between –45‰ and 1‰, whereas bulk rock δ34S analyses yield a more restricted range of –15.8 to 0.9‰. These low and variable δ34S values, together with bulk rock S concentrations ranging from 0.02% up to 1.28% are consistent with loss of magmatic primary mono-sulfide and addition of secondary sulfide via microbial sulfate reduction. High-precision multiple-sulfur isotope (32S/33S/34S) analyses suggest that secondary sulfides exhibit mass-dependent equilibrium fractionation relative to seawater sulfate in both δ33S and δ34S values. These relationships are explained by bacterial sulfate reduction proceeding at very low metabolic rates. The determination of the S-isotope composition of bulk altered oceanic crust demonstrates that S-based metabolic activity of subsurface life in oceanic basalt is widespread, and can affect the global S budget at the crust-seawater interface.
  • Article
    Abiotic redox reactions in hydrothermal mixing zones: decreased energy availability for the subsurface biosphere
    (National Academy of Sciences, 2020-08-12) McDermott, Jill M. ; Sylva, Sean P. ; Ono, Shuhei ; German, Christopher R. ; Seewald, Jeffrey S.
    Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42− reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.
  • Preprint
    Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria
    ( 2013-10) Meredith, Laura K. ; Rao, Deepa ; Bosak, Tanja ; Klepac-Ceraj, Vanja ; Tada, Kendall R. ; Hansel, Colleen M. ; Ono, Shuhei ; Prinn, Ronald G.
    Microbe-mediated soil uptake is the largest and most uncertain variable in the budget of atmospheric hydrogen (H2). The diversity and ecophysiological role of soil microorganisms that can consume low atmospheric abundances of H2 with high-affinity [NiFe]-hydrogenases is unknown. We expanded the library of atmospheric H2-consuming strains to include four soil Harvard Forest Isolate (HFI) Streptomyces spp., Streptomyces cattleya, and Rhodococcus equi by assaying for high-affinity hydrogenase (hhyL) genes and quantifying H2 uptake rates. We find that aerial structures (hyphae and spores) are important for Streptomyces H2 consumption; uptake was not observed in Streptomyces griseoflavus Tu4000 (deficient in aerial structures) and was reduced by physical disruption of Streptomyces sp. HFI8 aerial structures. H2 consumption depended on the life cycle stage in developmentally distinct actinobacteria: Streptomyces sp. HFI8 (sporulating) and R. equi (non-sporulating, non-filamentous). Strain HFI8 took up H2 only after forming aerial hyphae and sporulating, while R. equi only consumed H2 in the late exponential and stationary phase. These observations suggest that conditions favoring H2 uptake by actinobacteria are associated with energy and nutrient limitation. Thus, H2 may be an important energy source for soil microorganisms inhabiting systems in which nutrients are frequently limited.
  • Preprint
    Nonequilibrium clumped isotope signals in microbial methane
    ( 2015-02-09) Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Konneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. Y. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, Shuhei
    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.
  • Preprint
    Clumped isotopologue constraints on the origin of methane at seafloor hot springs
    ( 2017-11-12) Wang, David T. ; Reeves, Eoghan P. ; McDermott, Jill M. ; Seewald, Jeffrey S. ; Ono, Shuhei
    Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (ΣCO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a “clumped” isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310−42 +53 °C, with no apparent relation to the wide range of fluid temperatures (96 to 370 °C) and chemical compositions (pH, [H2], [ΣCO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270 to 360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water-rock reactions occurring at temperatures lower than 200 °C do not contribute significantly to the quantities of methane venting at mid-ocean ridge hot springs.
  • Article
    Geochemistry of fluids from Earth’s deepest ridge-crest hot-springs : Piccard hydrothermal field, Mid-Cayman Rise
    (Elsevier, 2018-02-13) McDermott, Jill M. ; Sylva, Sean P. ; Ono, Shuhei ; German, Christopher R. ; Seewald, Jeffrey S.
    Hosted in basaltic substrate on the ultra-slow spreading Mid-Cayman Rise, the Piccard hydrothermal field is the deepest currently known seafloor hot-spring (4957–4987 m). Due to its great depth, the Piccard site is an excellent natural system for investigating the influence of extreme pressure on the formation of submarine vent fluids. To investigate the role of rock composition and deep circulation conditions on fluid chemistry, the abundance and isotopic composition of organic, inorganic, and dissolved volatile species in high temperature vent fluids at Piccard were examined in samples collected in 2012 and 2013. Fluids from the Beebe Vents and Beebe Woods black smokers vent at a maximum temperature of 398 °C at the seafloor, however several lines of evidence derived from inorganic chemistry (Cl, SiO2, Ca, Br, Fe, Cu, Mn) support fluid formation at much higher temperatures in the subsurface. These high temperatures, potentially in excess of 500 °C, are attainable due to the great depth of the system. Our data indicate that a single deep-rooted source fluid feeds high temperature vents across the entire Piccard field. High temperature Piccard fluid H2 abundances (19.9 mM) are even higher than those observed in many ultramafic-influenced systems, such as the Rainbow (16 mM) and the Von Damm hydrothermal fields (18.2 mM). In the case of Piccard, however, these extremely high H2 abundances can be generated from fluid-basalt reaction occurring at very high temperatures. Magmatic and thermogenic sources of carbon in the high temperature black smoker vents are described. Dissolved ΣCO2 is likely of magmatic origin, CH4 may originate from a combination of thermogenic sources and leaching of abiotic CH4 from mineral-hosted fluid inclusions, and CO abundances are at equilibrium with the water–gas shift reaction. Longer-chained n-alkanes (C2H6, C3H8, n-C4H10, i-C4H10) may derive from thermal alteration of dissolved and particulate organic carbon sourced from the original seawater source, entrainment of microbial ecosystems peripheral to high temperature venting, and/or abiotic mantle sources. Dissolved ΣHCOOH in the Beebe Woods fluid is consistent with thermodynamic equilibrium for abiotic production via ΣCO2 reduction with H2 at 354 °C measured temperature. A lack of ΣHCOOH in the relatively higher temperature 398 °C Beebe Vent fluids demonstrates the temperature sensitivity of this equilibrium. Abundant basaltic seafloor outcrops and the axial location of the vent field, along with multiple lines of geochemical evidence, support extremely high temperature fluid-rock reaction with mafic substrate as the dominant control on Piccard fluid chemistry. These results expand the known diversity of vent fluid composition, with implications for supporting microbiological life in both the modern and ancient ocean.
  • Preprint
    Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)
    ( 2016-07) Wang, David T. ; Welander, Paula V. ; Ono, Shuhei
    Aerobic oxidation of methane plays a major role in reducing the amount of methane emitted to the atmosphere from freshwater and marine settings. We cultured an aerobic methanotroph, Methylococcus capsulatus (Bath) at 30 and 37 °C, and determined the relative abundance of 12CH4, 13CH4, 12CH3D, and 13CH3D (a doubly-substituted, or “clumped” isotopologue of methane) to characterize the clumped isotopologue effect associated with aerobic methane oxidation. In batch culture, the residual methane became enriched in 13C and D relative to starting methane, with D/H fractionation a factor of 9.14 (Dε/13ε) larger than that of 13C/12C. As oxidation progressed, the Δ13CH3D value (a measure of the excess in abundance of 13CH3D relative to a random distribution of isotopes among isotopologues) of residual methane decreased. The isotopologue fractionation factor for 13CH3D/12CH4 was found to closely approximate the product of the measured fractionation factors for 13CH4/12CH4 and 12CH3D/12CH4 (i.e., 13C/12C and D/H). The results give insight into enzymatic reversibility in the aerobic methane oxidation pathway. Based on the experimental data, a mathematical model was developed to predict isotopologue signatures expected for methane in the environment that has been partially-oxidized by aerobic methanotrophy. Measurement of methane clumped isotopologue abundances can be used to distinguish between aerobic methane oxidation and alternative methane-cycling processes.
  • Article
    Deep magma degassing and volatile fluxes through volcanic hydrothermal systems: Insights from the Askja and Kverkfjöll volcanoes, Iceland
    (Elsevier, 2023-03-17) Ranta, Eemu ; Halldórsson, Sæmundur A. ; Barry, Peter H. ; Ono, Shuhei ; Robin, Jóhann Gunnarsson ; Kleine, Barbara I. ; Ricci, Andrea ; Fiebig, Jens ; Sveinbjörnsdóttir, Árný E. ; Stefánsson, Andri
    Mantle volatiles are transported to Earth's crust and surface by basaltic volcanism. During subaerial eruptions, vast amounts of carbon, sulfur and halogens can be released to the atmosphere during a short time-interval, with impacts ranging in scale from the local environment to the global climate. By contrast, passive volatile release at the surface originating from magmatic intrusions is characterized by much lower flux, yet may outsize eruptive volatile quantities over long timescales. Volcanic hydrothermal systems (VHSs) act as conduits for such volatile release from degassing intrusions and can be used to gauge the contribution of intrusive magmatism to global volatile cycles. Here, we present new compositional and isotopic (δD and δ18O-H2O, 3He/4He, δ13C-CO2, Δ33S-δ34S-H2S and SO4) data for thermal waters and fumarole gases from the Askja and Kverkfjöll volcanoes in central Iceland. We use the data together with magma degassing modelling and mass balance calculations to constrain the sources of volatiles in VHSs and to assess the role of intrusive magmatism to the volcanic volatile emission budgets in Iceland.The CO2/ΣS (10−30), 3He/4He (8.3–10.5 RA; 3He/4He relative to air), δ13C-CO2 (−4.1 to −0.2 ‰) and Δ33S-δ34S-H2S (−0.031 to 0.003 ‰ and −1.5 to +3.6‰) values in high-gas flux fumaroles (CO2 > 10 mmol/mol) are consistent with an intrusive magmatic origin for CO2 and S at Askja and Kverkfjöll. We demonstrate that deep (0.5–5 kbar, equivalent to ∼2–18 km crustal depth) decompression degassing of basaltic intrusions in Iceland results in CO2 and S fluxes of 330–5060 and 6–210 kt/yr, respectively, which is sufficient to account for the estimated CO2 flux of Icelandic VHSs (3365–6730 kt/yr), but not the VHS S flux (220–440 kt/yr). Secondary, crystallization-driven degassing from maturing intrusions and leaching of crustal rocks are suggested as additional sources of S. Only a minor proportion of the mantle flux of Cl is channeled via VHSs whereas the H2O flux remains poorly constrained, because magmatic signals in Icelandic VHSs are masked by a dominant shallow groundwater component of meteoric water origin. These results suggest that the bulk of the mantle CO2 and S flux to the atmosphere in Iceland is supplied by intrusive, not eruptive magmatism, and is largely vented via hydrothermal fields.•New fumarole and thermal water data for Askja and Kverkfjöll volcanoes, Iceland.•Data compared to modelled compositions and fluxes of magmatic gas.•Fumarole compositions compatible with origin of CO2 and S from degassing intrusions.•Intrusive magmatic fluxes sufficient to sustain hydrothermal fluxes of CO2 and S in Iceland•Magma degassing insignificant/minor source of H2O and Cl to Icelandic hydrothermal fluids
  • Preprint
    Incorporation of water-derived hydrogen into methane during artificial maturation of source rock under hydrothermal conditions
    (Elsevier, 2022-08-12) Wang, David T. ; Seewald, Jeffrey S. ; Reeves, Eoghan P. ; Ono, Shuhei ; Sylva, Sean P.
    To investigate the origin of Csingle bondH bonds in thermogenic methane (CH4), a solvent-extracted sample of organic-rich Eagle Ford shale was reacted with heavy water (D2O) under hydrothermal conditions (350 bar) in a flexible Au-TiO2 cell hydrothermal apparatus at a water-to-rock ratio of approximately 5:1. Temperature was increased from 200 to 350 °C over the course of one month and the concentrations of aqueous species and methane isotopologues were quantified as a function of time. In general, production of hydrogen, CO2, alkanes, and alkenes increased with time and temperature. Methane formed during the early stages of the experiment at 200 °C was primarily C1H4 with some CH3D. With progressively higher temperatures, increasing proportions of deuterated isotopologues were produced. Near the end of the experiment, the concentration of CD4 exceeded that of all other isotopologues combined. These results suggest that competition between rates of kerogen-water isotopic exchange and natural gas generation may govern the D/H ratio of thermogenic gases. Furthermore, hydrogenation of kerogen by water may be responsible for hydrocarbon yields in excess of those predicted by conventional models of source rock maturation in which hydrocarbon generation is limited by the amount of organically bonded hydrogen.