Guay Christopher K.

No Thumbnail Available
Last Name
Guay
First Name
Christopher K.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    The rapid response of the Canada Basin to climate forcing : from bellwether to alarm bells
    (Oceanography Society, 2011-09) McLaughlin, Fiona A. ; Carmack, Eddy C. ; Proshutinsky, Andrey ; Krishfield, Richard A. ; Guay, Christopher K. ; Yamamoto-Kawai, Michiyo ; Jackson, Jennifer M. ; Williams, William J.
    Sea ice extent in the Arctic Ocean diminished significantly during the first decade of the 2000s, most particularly in the Canada Basin where the loss of both multiyear and first-year ice was greater than in the other three subbasins. Using data collected during basin-wide surveys conducted from 2003–2010 together with data collected during the 1990s and 2000s at one station in the southern Canada Basin, we investigate the response of the Canada Basin water column to this significant decrease in ice cover. Changes were evident from the surface down to the Atlantic layer: some changes were the result of Beaufort Gyre forcing on regional processes, others were the result of Arctic Ocean atmospheric forcing on a hemispheric scale and large-scale advection. These changes have troubling consequences for the ecosystem.
  • Article
    Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers
    (American Geophysical Union, 2008-09-20) Cooper, Lee W. ; McClelland, James W. ; Holmes, Robert M. ; Raymond, Peter A. ; Gibson, J. J. ; Guay, Christopher K. ; Peterson, Bruce J.
    We present new flow-weighted data for δ 18OH2O, dissolved organic carbon (DOC), dissolved barium and total alkalinity from the six largest Arctic rivers: the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie. These data, which can be used to trace runoff, are based upon coordinated collections between 2003 and 2006 that were temporally distributed to capture linked seasonal dynamics of river flow and tracer values. Individual samples indicate significant variation in the contributions each river makes to the Arctic Ocean. Use of these new flow-weighted estimates should reduce uncertainties in the analysis of freshwater transport and fate in the upper Arctic Ocean, including the links to North Atlantic thermohaline circulation, as well as regional water mass analysis. Additional improvements should also be possible for assessing the mineralization rate of the globally significant flux of terrigenous DOC contributed to the Arctic Ocean by these major rivers.