Holmgren Miguel

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Article
    Sodium flux ratio in Na/K pump-channels opened by palytoxin
    (Rockefeller University Press, 2007-06-11) Rakowski, Robert F. ; Artigas, Pablo ; Palma, Francisco ; Holmgren, Miguel ; De Weer, Paul ; Gadsby, David C.
    Palytoxin binds to Na+/K+ pumps in the plasma membrane of animal cells and opens an electrodiffusive cation pathway through the pumps. We investigated properties of the palytoxin-opened channels by recording macroscopic and microscopic currents in cell bodies of neurons from the giant fiber lobe, and by simultaneously measuring net current and 22Na+ efflux in voltage-clamped, internally dialyzed giant axons of the squid Loligo pealei. The conductance of single palytoxin-bound "pump-channels" in outside-out patches was ~7 pS in symmetrical 500 mM [Na+], comparable to findings in other cells. In these high-[Na+], K+-free solutions, with 5 mM cytoplasmic [ATP], the K0.5 for palytoxin action was ~70 pM. The pump-channels were ~40–50 times less permeable to N-methyl-D-glucamine (NMG+) than to Na+. The reversal potential of palytoxin-elicited current under biionic conditions, with the same concentration of a different permeant cation on each side of the membrane, was independent of the concentration of those ions over the range 55–550 mM. In giant axons, the Ussing flux ratio exponent (n') for Na+ movements through palytoxin-bound pump-channels, over a 100–400 mM range of external [Na+] and 0 to –40 mV range of membrane potentials, averaged 1.05 ± 0.02 (n = 28). These findings are consistent with occupancy of palytoxin-bound Na+/K+ pump-channels either by a single Na+ ion or by two Na+ ions as might be anticipated from other work; idiosyncratic constraints are needed if the two Na+ ions occupy a single-file pore, but not if they occupy side-by-side binding sites, as observed in related structures, and if only one of the sites is readily accessible from both sides of the membrane.
  • Article
    The dynamic relationships between the three events that release individual Na+ ions from the Na+/K+-ATPase
    (Nature Publishing Group, 2012-02-14) Gadsby, David C. ; Bezanilla, Francisco ; Rakowski, Robert F. ; De Weer, Paul ; Holmgren, Miguel
    Na+/K+ pumps move net charge through the cell membrane by mediating unequal exchange of intracellular Na+ and extracellular K+. Most charge moves during transitions that release Na+ to the cell exterior. When pumps are constrained to bind and release only Na+, a membrane voltage-step redistributes pumps among conformations with zero, one, two or three bound Na+, thereby transiently generating current. By applying rapid voltage steps to squid giant axons, we previously identified three components in such transient currents, with distinct relaxation speeds: fast (which nearly parallels the voltage-jump time course), medium speed (τm=0.2–0.5 ms) and slow (τs=1–10 ms). Here we show that these three components are tightly correlated, both in their magnitudes and in the time courses of their changes. The correlations reveal the dynamics of the conformational rearrangements that release three Na+ to the exterior (or sequester them into their binding sites) one at a time, in an obligatorily sequential manner.