Stopa Justin

No Thumbnail Available
Last Name
Stopa
First Name
Justin
ORCID
0000-0002-7477-8224

Search Results

Now showing 1 - 3 of 3
  • Article
    Overview of the Arctic Sea state and boundary layer physics program
    (American Geophysical Union, 2018-04-16) Thomson, Jim ; Ackley, Stephen ; Girard-Ardhuin, Fanny ; Ardhuin, Fabrice ; Babanin, Alexander ; Boutin, Guillaume ; Brozena, John ; Cheng, Sukun ; Collins, Clarence ; Doble, Martin ; Fairall, Christopher W. ; Guest, Peter ; Gebhardt, Claus ; Gemmrich, Johannes ; Graber, Hans C. ; Holt, Benjamin ; Lehner, Susanne ; Lund, Björn ; Meylan, Michael ; Maksym, Ted ; Montiel, Fabien ; Perrie, Will ; Persson, Ola ; Rainville, Luc ; Rogers, W. Erick ; Shen, Hui ; Shen, Hayley ; Squire, Vernon ; Stammerjohn, Sharon E. ; Stopa, Justin ; Smith, Madison M. ; Sutherland, Peter ; Wadhams, Peter
    A large collaborative program has studied the coupled air‐ice‐ocean‐wave processes occurring in the Arctic during the autumn ice advance. The program included a field campaign in the western Arctic during the autumn of 2015, with in situ data collection and both aerial and satellite remote sensing. Many of the analyses have focused on using and improving forecast models. Summarizing and synthesizing the results from a series of separate papers, the overall view is of an Arctic shifting to a more seasonal system. The dramatic increase in open water extent and duration in the autumn means that large surface waves and significant surface heat fluxes are now common. When refreezing finally does occur, it is a highly variable process in space and time. Wind and wave events drive episodic advances and retreats of the ice edge, with associated variations in sea ice formation types (e.g., pancakes, nilas). This variability becomes imprinted on the winter ice cover, which in turn affects the melt season the following year.
  • Article
    Emerging trends in the sea state of the Beaufort and Chukchi seas
    (Elsevier, 2016-07-06) Thomson, James M. ; Fan, Yalin ; Stammerjohn, Sharon E. ; Stopa, Justin ; Rogers, W. Erick ; Girard-Ardhuin, Fanny ; Ardhuin, Fabrice ; Shen, Hayley ; Perrie, Will ; Shen, Hui ; Ackley, Stephen ; Babanin, Alexander ; Liu, Qingxiang ; Guest, Peter ; Maksym, Ted ; Wadhams, Peter ; Fairall, Christopher W. ; Persson, Ola ; Doble, Martin J. ; Graber, Hans C. ; Lund, Bjoern ; Squire, Vernon ; Gemmrich, Johannes ; Lehner, Susanne ; Holt, Benjamin ; Meylan, Michael ; Brozena, John ; Bidlot, Jean-Raymond
    The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.
  • Article
    The Deep Ocean Observing Strategy: addressing global challenges in the deep sea through collaboration
    (Marine Technology Society, 2022-06-08) Smith, Leslie M. ; Cimoli, Laura ; LaScala-Gruenewald, Diana ; Pachiadaki, Maria G. ; Phillips, Brennan T. ; Pillar, Helen R. ; Stopa, Justin ; Baumann-Pickering, Simone ; Beaulieu, Stace E. ; Bell, Katherine L. C. ; Harden-Davies, Harriet ; Gjerde, Kristina M. ; Heimbach, Patrick ; Howe, Bruce M. ; Janssen, Felix ; Levin, Lisa A. ; Ruhl, Henry A. ; Soule, S. Adam ; Stocks, Karen ; Vardaro, Michael F. ; Wright, Dawn J.
    The Deep Ocean Observing Strategy (DOOS) is an international, community-driven initiative that facilitates collaboration across disciplines and fields, elevates a diverse cohort of early career researchers into future leaders, and connects scientific advancements to societal needs. DOOS represents a global network of deep-ocean observing, mapping, and modeling experts, focusing community efforts in the support of strong science, policy, and planning for sustainable oceans. Its initiatives work to propose deep-sea Essential Ocean Variables; assess technology development; develop shared best practices, standards, and cross-calibration procedures; and transfer knowledge to policy makers and deep-ocean stakeholders. Several of these efforts align with the vision of the UN Ocean Decade to generate the science we need to create the deep ocean we want. DOOS works toward (1) a healthy and resilient deep ocean by informing science-based conservation actions, including optimizing data delivery, creating habitat and ecological maps of critical areas, and developing regional demonstration projects; (2) a predicted deep ocean by strengthening collaborations within the modeling community, determining needs for interdisciplinary modeling and observing system assessment in the deep ocean; (3) an accessible deep ocean by enhancing open access to innovative low-cost sensors and open-source plans, making deep-ocean data Findable, Accessible, Interoperable, and Reusable, and focusing on capacity development in developing countries; and finally (4) an inspiring and engaging deep ocean by translating science to stakeholders/end users and informing policy and management decisions, including in international waters.