Ulmer
Kevin M.
Ulmer
Kevin M.
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ArticleVertical visual features have a strong influence on cuttlefish camouflage(Marine Biological Laboratory, 2013-04) Ulmer, Kevin M. ; Buresch, Kendra C. ; Kossodo, M. M. ; Mathger, Lydia M. ; Siemann, Liese A. ; Hanlon, Roger T.Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.
-
PreprintExpression of squid iridescence depends on environmental luminance and peripheral ganglion control( 2013-10) Gonzalez-Bellido, Paloma T. ; Wardill, Trevor J. ; Buresch, Kendra C. ; Ulmer, Kevin M. ; Hanlon, Roger T.Squids display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (i) the iridescence signals are routed through a peripheral center called the stellate ganglion and (ii) the iridescence motorneurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squids change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.
-
Working PaperPump it Up workshop report(Woods Hole Oceanographic Institution, 2017-10-20) Buesseler, Ken O. ; Adams, Allan ; Bellingham, James G. ; Dever, Mathieu ; Edgcomb, Virginia P. ; Estapa, Margaret L. ; Frank, Alex ; Gallager, Scott M. ; Govindarajan, Annette F. ; Horner, Tristan J. ; Hunter, Jon ; Jakuba, Michael V. ; Kapit, Jason ; Katija, Kakani ; Lawson, Gareth L. ; Lu, Yuehan ; Mahadevan, Amala ; Nicholson, David P. ; Omand, Melissa M. ; Palevsky, Hilary I. ; Rauch, Chris ; Sosik, Heidi M. ; Ulmer, Kevin M. ; Wurgaft, Eyal ; Yoerger, Dana R.A two-day workshop was conducted to trade ideas and brainstorm about how to advance our understanding of the ocean’s biological pump. The goal was to identify the most important scientific issues that are unresolved but might be addressed with new and future technological advances.
-
ArticleUnderstanding the role of the biological pump in the global carbon cycle : an imperative for ocean science(The Oceanography Society, 2014-09) Honjo, Susumu ; Eglinton, Timothy I. ; Taylor, Craig D. ; Ulmer, Kevin M. ; Sievert, Stefan M. ; Bracher, Astrid ; German, Christopher R. ; Edgcomb, Virginia P. ; Francois, Roger ; Iglesias-Rodriguez, M. Debora ; Van Mooy, Benjamin A. S. ; Repeta, Daniel J.Anthropogenically driven climate change will rapidly become Earth's dominant transformative influence in the coming decades. The oceanic biological pump—the complex suite of processes that results in the transfer of particulate and dissolved organic carbon from the surface to the deep ocean—constitutes the main mechanism for removing CO2 from the atmosphere and sequestering carbon at depth on submillennium time scales. Variations in the efficacy of the biological pump and the strength of the deep ocean carbon sink, which is larger than all other bioactive carbon reservoirs, regulate Earth's climate and have been implicated in past glacial-interglacial cycles. The numerous biological, chemical, and physical processes involved in the biological pump are inextricably linked and heterogeneous over a wide range of spatial and temporal scales, and they influence virtually the entire ocean ecosystem. Thus, the functioning of the oceanic biological pump is not only relevant to the modulation of Earth's climate but also constitutes the basis for marine biodiversity and key food resources that support the human population. Our understanding of the biological pump is far from complete. Moreover, how the biological pump and the deep ocean carbon sink will respond to the rapid and ongoing anthropogenic changes to our planet—including warming, acidification, and deoxygenation of ocean waters—remains highly uncertain. To understand and quantify present-day and future changes in biological pump processes requires sustained global observations coupled with extensive modeling studies supported by international scientific coordination and funding.
-
ThesisRate zonal density gradient ultracentrifugation analysis of repair of radiation damage to the folded chromosome of Escherichia coli(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1978-04) Ulmer, Kevin M.The structure of the membrane-free nucleoid of Escherichia coli and of unfolded chromosomal DNA was investigated by sedimentation on neutral sucrose gradients after irradiation with 60Co gamma-rays and ultraviolet light (2S4nm). Irradiation both in vivo and in vitro was used as a molecular probe of the constraints on DNA~packaging in the bacterial chromosome. The extremely gentle lysis and unfolding procedures which were developed yielded undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically-significant doses of ionizing radiation. In vitro UV-irradiation of nucleoids resulted in an increase in the observed rate of sedimentation due to the formation of an unknown photo-product. In contrast, UV-irradiation of wild-type cells in vivo showed evidence of the formation of incision breaks which resulted in the relaxation of supercoiling in the nucleoid. Strand breakage was also observed following in vivo UV-irradiation of a uvrB-5 strain, but at a lower rate and also accompanied by considerable unfolding of the chromosome. Such lesions may have been the result of direct photochemical reactions in the nucleoid, or enzyme activity associated with a uvr-independent mode of repair. The number of domains of supercoiling was estimated at 170 per genome equivalent of DNA based on measurements of relaxation caused by single-strand break formation in in vivo- and in vitro-gamma-irradiated folded chromosomes. Similar estimates based on the target size of RNA molecules responsible for maintaining the compact packaging of the nucleoid predicted negligible unfolding due to the formation of RNA single-strand breaks at doses up-to 10 Krad, and were born out by experimental measurements. Unfolding of the nucleoid in vitro by limit-digestion with RNase or by heating at 70° resulted in DNA complexes with sedimentation coefficients of 1030±59S and 625±15S respectively. The difference in these rates was apparently due to more complete deproteinization and thus less mass in the heated material. These structures are believed to represent intact, replicating genomes in the form of complex-theta structures containing 2-3 genome equivalents of DNA. The rate of formation of double-strand breaks was determined from molecular weight measurements of thermally unfolded chromosomal DNA gamma-irradiated in vitro. Break formation was linear with dose up to 10 Krad, resulting in 0.27 double-strand breaks per kilorad per genome equivalent of DNA and requiring 1080 eV/double-strand break. The influence of possible non-linear DNA conformations of these calculations is discussed. Repair of ionizing radiation damage to folded chromosomes was observed within 2-3 hours of post-irradiation incubation in growth medium. A model based on recombinational repair is proposed to explain the formation of 2200-2300S material during early stages of incubation and subsequent changes in the gradient profiles. Such behavior is not observed for post-irradiation incubation of wild-type cells in buffer or for a recA-13 strain incubated in growth medium. Association of unrepaired DNA with plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (>>3100S) during the later stages of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from RNAse-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2-3 hours of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells which survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that 1-2 double-strand breaks per genome are repairable in this strain of E. coli.