Aquino Karmina A.

No Thumbnail Available
Last Name
First Name
Karmina A.

Search Results

Now showing 1 - 2 of 2
  • Article
    Multi-stage evolution of the Lost City hydrothermal vent fluids
    (Elsevier, 2022-08-13) Aquino, Karmina A. ; Früh-Green, Gretchen L. ; Rickli, Jörg ; Bernasconi, Stefano M. ; Lang, Susan Q. ; Lilley, Marvin D. ; Butterfield, David A.
    Serpentinization-influenced hydrothermal systems, such as the Lost City Hydrothermal Field (LCHF), are considered as potential sites for the origin of life. Despite an abundance of reducing power in this system (H2 and CH4), microbial habitability may be limited by high pH, elevated temperatures, and/or low concentrations of bioavailable carbon. At the LCHF, the relative contribution of biotic and abiotic processes to the vent fluid composition, especially in the lower temperature vents, remain poorly constrained. We present fluid chemistry and isotope data that suggest that all LCHF fluids are derived from a single endmember produced in the hotter, deeper subsurface essentially in the absence of microbial activity. The strontium isotope composition (87Sr/86Sr) of this fluid records the influence of underlying mantle and/or gabbroic rocks, whereas sulfur isotope composition indicates closed-system thermochemical sulfate reduction. Conductive cooling and transport is accompanied by continued sulfate reduction, likely microbial, and mixing with unaltered seawater, which produce second-order vents characterized by higher δ34Ssulfide and lower δ34Ssulfate values. Third-order vent fluids are produced by varying degrees of subsurface mixing between the first- and second-order fluids and a seawater-dominated fluid. Additional biotic and abiotic processes along different flow paths are needed to explain the spatial variability among the vents. Relationships between sulfur geochemistry and hydrogen concentrations dominantly reflect variations in temperature and/or distance from the primary outflow path. Methane concentrations are constant across the field which point to an origin independent of flow path and venting temperature. At Lost City, not all vent fluids appear to have zero Mg concentrations. Thus, we propose an extrapolation to a Sr isotope-endmember composition as an alternative method to estimate endmember fluid compositions at least in similar systems where a two-component mixing with respect to Sr isotopes between seawater and endmember fluids can be established.
  • Article
    Metabolic strategies shared by basement residents of the lost city hydrothermal field
    (American Society for Microbiology, 2022-09-13) Brazelton, William J. ; McGonigle, Julia M. ; Motamedi, Shahrzad ; Pendleton, H. Lizethe ; Twing, Katrina I. ; Miller, Briggs C. ; Lowe, William J. ; Hoffman, Alessandrina M. ; Prator, Cecilia A. ; Chadwick, Grayson L. ; Anderson, Rika E. ; Thomas, Elaina ; Butterfield, David A. ; Aquino, Karmina A. ; Fruh-Green, Gretchen L. ; Schrenk, Matthew O. ; Lang, Susan Q.
    Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth’s mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions.