Jakobsen Kjetill S.

No Thumbnail Available
Last Name
First Name
Kjetill S.

Search Results

Now showing 1 - 2 of 2
  • Article
    The Earth BioGenome Project 2020: starting the clock
    (National Academy of Sciences, 2022-01-18) Lewin, Harris A. ; Richards, Stephen ; Miguel L. Allende ; Lieberman Aiden, Erez ; Archibald, John M. ; Bálint, Miklós ; Barker, Katharine B. ; Baumgartner, Bridget ; Belov, Katherine ; Bertorelle, Giorgio ; Blaxter, Mark ; Cai, Jing ; Caperello, Nicolette D. ; Carlson, Keith ; Castilla-Rubio, Juan Carlos ; Chaw, Shu-Miaw ; Chen, Lei ; Childers, Anna K. ; Coddington, Jonathan ; Conde, Dalia A. ; Corominas, Montserrat ; Crandall, Keith A. ; Crawford, Andrew J. ; DiPalma, Federica ; Durbin, Richard ; Ebenezer, ThankGod E. ; Edwards, Scott V. ; Fedrigo, Olivier ; Flicek, Paul ; Formenti, Giulio ; Gibbs, Richard A. ; Gilbert, M. Thomas P. ; Goldstein, Melissa M. ; Graves, Jennifer Marshall ; Greely, Henry T. ; Grigoriev, Igor V. ; Hackett, Kevin J. ; Hall, Neil ; Haussler, David ; Helgen, Kristofer M. ; Hogg, Carolyn J. ; Isobe, Sachiko ; Jakobsen, Kjetill S. ; Janke, Axel ; Jarvis, Erich ; Johnson, Warren E. ; Jones, Steven J. M. ; Karlsson, Elinor K. ; Kersey, Paul J. ; Kim, Jin-Hyoung ; Kress, W. John ; Kuraku, Shigehiro ; Lawniczak, Mara K. N. ; Leebens-Mack, James H. ; Li, Xueyan ; Lindblad-Toh, Kerstin ; Liu, Xin ; Lopez, Jose V. ; Marques-Bonet, Tomas ; Mazard, Sophie ; Mazet, Jonna A. K. ; Mazzoni, Camila J. ; Myers, Eugene ; O’Neill, Rachel J. ; Paez, Sadye ; Park, Hyun ; Robinson, Gene E. ; Roquet, Cristina ; Ryder, Oliver A. ; Sabir, Jamal S. M. ; Shaffer, H. Bradley ; Shank, Timothy M. ; Sherkow, Jacob S. ; Soltis, Pamela S. ; Tang, Boping ; Tedersoo, Leho ; Uliano-Silva, Marcela ; Wang, Kun ; Wei, Xiaofeng ; Wetzer, Regina ; Wilson, Julia L. ; Xu, Xun ; Yang, Huanming ; Yoder, Anne D. ; Zhang, Guojie
    November 2020 marked 2 y since the launch of the Earth BioGenome Project (EBP), which aims to sequence all known eukaryotic species in a 10-y timeframe. Since then, significant progress has been made across all aspects of the EBP roadmap, as outlined in the 2018 article describing the project’s goals, strategies, and challenges (1). The launch phase has ended and the clock has started on reaching the EBP’s major milestones. This Special Feature explores the many facets of the EBP, including a review of progress, a description of major scientific goals, exemplar projects, ethical legal and social issues, and applications of biodiversity genomics. In this Introduction, we summarize the current status of the EBP, held virtually October 5 to 9, 2020, including recent updates through February 2021. References to the nine Perspective articles included in this Special Feature are cited to guide the reader toward deeper understanding of the goals and challenges facing the EBP.
  • Article
    The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) : illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing
    (Public Library of Science, 2014-06-24) Keeling, Patrick J. ; Burki, Fabien ; Wilcox, Heather M. ; Allam, Bassem ; Allen, Eric E. ; Amaral-Zettler, Linda A. ; Armbrust, E. Virginia ; Archibald, John M. ; Bharti, Arvind K. ; Bell, Callum J. ; Beszteri, Bank ; Bidle, Kay D. ; Cameron, Connor T. ; Campbell, Lisa ; Caron, David A. ; Cattolico, Rose Ann ; Collier, Jackie L. ; Coyne, Kathryn J. ; Davy, Simon K. ; Deschamps, Phillipe ; Dyhrman, Sonya T. ; Edvardsen, Bente ; Gates, Ruth D. ; Gobler, Christopher J. ; Greenwood, Spencer J. ; Guida, Stephanie M. ; Jacobi, Jennifer L. ; Jakobsen, Kjetill S. ; James, Erick R. ; Jenkins, Bethany D. ; John, Uwe ; Johnson, Matthew D. ; Juhl, Andrew R. ; Kamp, Anja ; Katz, Laura A. ; Kiene, Ronald P. ; Kudryavtsev, Alexander N. ; Leander, Brian S. ; Lin, Senjie ; Lovejoy, Connie ; Lynn, Denis ; Marchetti, Adrian ; McManus, George ; Nedelcu, Aurora M. ; Menden-Deuer, Susanne ; Miceli, Cristina ; Mock, Thomas ; Montresor, Marina ; Moran, Mary Ann ; Murray, Shauna A. ; Nadathur, Govind ; Nagai, Satoshi ; Ngam, Peter B. ; Palenik, Brian ; Pawlowski, Jan ; Petroni, Giulio ; Piganeau, Gwenael ; Posewitz, Matthew C. ; Rengefors, Karin ; Romano, Giovanna ; Rumpho, Mary E. ; Rynearson, Tatiana A. ; Schilling, Kelly B. ; Schroeder, Declan C. ; Simpson, Alastair G. B. ; Slamovits, Claudio H. ; Smith, David R. ; Smith, G. Jason ; Smith, Sarah R. ; Sosik, Heidi M. ; Stief, Peter ; Theriot, Edward ; Twary, Scott N. ; Umale, Pooja E. ; Vaulot, Daniel ; Wawrik, Boris ; Wheeler, Glen L. ; Wilson, William H. ; Xu, Yan ; Zingone, Adriana ; Worden, Alexandra Z.
    Microbial ecology is plagued by problems of an abstract nature. Cell sizes are so small and population sizes so large that both are virtually incomprehensible. Niches are so far from our everyday experience as to make their very definition elusive. Organisms that may be abundant and critical to our survival are little understood, seldom described and/or cultured, and sometimes yet to be even seen. One way to confront these problems is to use data of an even more abstract nature: molecular sequence data. Massive environmental nucleic acid sequencing, such as metagenomics or metatranscriptomics, promises functional analysis of microbial communities as a whole, without prior knowledge of which organisms are in the environment or exactly how they are interacting. But sequence-based ecological studies nearly always use a comparative approach, and that requires relevant reference sequences, which are an extremely limited resource when it comes to microbial eukaryotes. In practice, this means sequence databases need to be populated with enormous quantities of data for which we have some certainties about the source. Most important is the taxonomic identity of the organism from which a sequence is derived and as much functional identification of the encoded proteins as possible. In an ideal world, such information would be available as a large set of complete, well-curated, and annotated genomes for all the major organisms from the environment in question. Reality substantially diverges from this ideal, but at least for bacterial molecular ecology, there is a database consisting of thousands of complete genomes from a wide range of taxa, supplemented by a phylogeny-driven approach to diversifying genomics. For eukaryotes, the number of available genomes is far, far fewer, and we have relied much more heavily on random growth of sequence databases, raising the question as to whether this is fit for purpose.