Aoki Nadège

No Thumbnail Available
Last Name
Aoki
First Name
Nadège
ORCID
0000-0003-3111-4273

Search Results

Now showing 1 - 7 of 7
  • Article
    Acoustic properties and shallow water propagation distances of Caribbean spiny lobster sounds (Panulirus argus)
    (Acoustical Society of America, 2023-01-04) Jézéquel, Youenn ; Aoki, Nadège ; Mooney, T. Aran
    Marine crustaceans produce broadband sounds that are useful for passive acoustic monitoring to support conservation and management efforts. However, the propagation characteristics and detection ranges of their signals are poorly known, limiting our leveraging of these sounds. Here, we used a four-hydrophone linear array to measure source levels (SLs) and sound propagation from Caribbean spiny lobsters (Panulirus argus) of a wide range of sizes within a natural, shallow water habitat (3.3 m depth). Source level in peak-peak (SLpp) varied with body size; larger individuals produced SLpp up to 166 dB re 1 μPa. However, transmission losses (TL) were similar across all sizes, with a global fitted TL of 12.1 dB. Correspondingly, calculated detection ranges varied with body size, ranging between 14 and 364 m for small and large individuals (respectively). This increased up to 1612 m for large spiny lobsters when considering lower ambient noise levels. Despite the potential ease of tank studies, our results highlight the importance of empirical in situ sound propagation studies for marine crustaceans. Given the important ecological and economic role of spiny lobsters, these data are a key step to supporting remote monitoring of this species for fisheries management and efforts to acoustically quantify coral reefs' health.
  • Article
    Tank acoustics substantially distort broadband sounds produced by marine crustaceans
    (Acoustical Society of America, 2022-12-20) Jézéquel, Youenn ; Bonnel, Julien ; Aoki, Nadège ; Mooney, T. Aran
    Marine crustaceans produce broadband sounds that have been mostly characterized in tanks. While tank physical impacts on such signals are documented in the acoustic community, they are overlooked in the bioacoustic literature with limited empirical comparisons. Here, we compared broadband sounds produced at 1 m from spiny lobsters (Panulirus argus) in both tank and in situ conditions. We found significant differences in all sound features (temporal, power, and spectral) between tank and in situ recordings, highlighting that broadband sounds, such as those produced by marine crustaceans, cannot be accurately characterized in tanks. We then explained the three main physical impacts that distort broadband sounds in tanks, respectively known as resonant frequencies, sound reverberation, and low frequency attenuation. Tank resonant frequencies strongly distort the spectral shape of broadband sounds. In the high frequency band (above the tank minimum resonant frequency), reverberation increases sound duration. In the low frequency band (below the tank minimum resonant frequency), low frequencies are highly attenuated due to their longer wavelength compared to the tank size and tank wall boundary conditions (zero pressure) that prevent them from being accurately measured. Taken together, these results highlight the importance of understanding tank physical impacts when characterizing broadband crustacean sounds.
  • Article
    Ramicrusta invasive alga causes mortality in Caribbean coral larvae
    (Frontiers Media, 2023-04-18) Cayemitte, Kayla ; Aoki, Nadège ; Ferguson, Sophie R. ; Mooney, T. Aran ; Apprill, Amy
    The settlement of coral larvae is an important process which contributes to the success and longevity of coral reefs. Coral larvae often recruit to benthic structures covered with crustose coralline algae (CCA) which produce cues that promote settlement and metamorphosis. The Peysonneliaceae Ramicrusta spp. are red-brown encrusting alga that have recently become abundant on shallow Caribbean reefs, replacing CCA habitat, overgrowing corals and potentially threatening coral recruitment. In order to assess the threat of Ramicrusta to coral recruitment, we compared the survival and settlement of Porites astreoides and Favia fragum larvae to 0.5 – 2 mg ml -1 solutions of Ramicrusta sp. or CCA as well as sterile seawater (control). In all cases larval mortality was extremely high in the Ramicrusta treatments compared to the CCA and control treatments. We found 96% (± 8.9% standard deviation, SD) mortality of P. astreoides larvae when exposed to solutions of Ramicrusta and 0 - 4% (± 0 - 8.9% SD) mortality in the CCA treatments. We observed 100% F. fragum larval mortality when exposed to Ramicrusta and 5 – 10% (± 10 – 20% SD) mortality in the CCA treatments. Settlement or surface interaction of larvae in the CCA treatments was 40 - 68% (± 22 - 37% SD) for P. astreoides and 65 - 75% (± 10 - 19% SD) for F. fragum . Two P. astreoides larva that survived Ramicrusta exposure did settle/surface interact, suggesting that some larvae may be tolerant to Ramicrusta . These results suggest that Ramicrusta is a lethal threat to Caribbean coral recruitment.
  • Article
    Pile driving noise induces transient gait disruptions in the longfin squid (Doryteuthis pealeii)
    (Frontiers Media, 2022-12-15) Seth F. Cones ; Youenn Jézéquel ; Sophie Ferguson ; Nadège Aoki ; T. Aran Mooney
    Anthropogenic noise is now a prominent pollutant increasing in both terrestrial and marine environments. In the ocean, proliferating offshore windfarms, a key renewable energy source, are a prominent noise concern, as their pile driving construction is among the most intense anthropogenic sound sources. Yet, across taxa, there is little information of pile driving noise impacts on organismal fine-scale movement despite its key link to individual fitness. Here, we experimentally quantified the swimming behavior of an abundant squid species (Doryteuthis pealeii) of vital commercial and ecological importance in response to in situ pile driving activity on multiple temporal and spatial scales (thus exposed to differing received levels, or noise-doses). Pile driving induced energetically costly alarm-jetting behaviors in most (69%) individuals at received sound levels (in zero to peak) of 112-123 dB re 1 µm s-2, levels similar to those measured at the kilometer scale from some wind farm construction areas. No responses were found at a comparison site with lower received sound levels. Persistence of swimming pattern changes during noise-induced alarm responses, a key metric addressing energetic effects, lasted up to 14 s and were significantly shorter in duration than similar movement changes caused by natural conspecific interactions. Despite observing dramatic behavioral changes in response to initial pile driving noise, there was no evidence of gait changes over an experiment day. These results demonstrate that pile driving disrupts squid fine-scale movements, but impacts are short-lived suggesting that offshore windfarm construction may minimally impact the energetics of this ecologically key taxon. However, further work is needed to assess potential behavioral and physiological impacts at higher noise levels.
  • Article
    Daytime boat sound does not affect the behavior of wild thorny oysters (Spondylus americanus): A field-based study
    (Acoustical Society of America, 2023-08-16) Jezequel, Youenn ; Aoki, Nadège ; Cones, Seth F. ; Mooney, T. Aran
    There is increasing awareness of boat sound effects on coral reef assemblages. While behavioral disturbances have been found in fishes, the effects on marine invertebrates remain largely unknown. Here, the behavioral effects of recreational boat sound on thorny oysters at two coral reef habitats within the U.S. Virgin Island National Park were assessed. The “treatment” site was characterized by frequent boat traffic, which increased daytime mean particle acceleration levels (PALrms) by more than 6 dB, while mean PALrms at the “control” site were not contaminated by boat sound. Despite these contrasting soundscapes, all oysters showed the same diurnal cycle, with their valves open at night and partially closed during the day. There was no statistical evidence of behavioral responses in oysters exposed to daytime boat sound. This can be explained by low auditory sensitivity, habituation to a noisy environment due to the pervasiveness of boat sound pollution, or that boat sound may not represent an immediate concern for this species. These findings contrast with laboratory studies that have shown behavioral responses in bivalves exposed to boat sound, highlighting the need for more realistic field-based studies when evaluating potential effects of anthropogenic sounds on this group.
  • Article
    Short-term habituation of the longfin squid (Doryteuthis pealeii) to pile driving sound
    (Oxford University Press, 2023-10-25) Jezequel, Youenn ; Jandial, Prajna ; Cones, Seth F. ; Ferguson, Sophie R. ; Aoki, Nadège ; Girdhar, Yogesh ; Mooney, T. Aran
    Offshore windfarms are a key renewable solution to help supply global energy needs. However, implementation has its challenges, including intense pile driving sound produced during constructions, which can affect marine life at the individual level, yet impacts at the group level remain poorly studied. Here, we exposed groups of longfin squid (Doryteuthis pealeii) in cages at multiple distances from consecutive pile driving events and sought to quantify responses at both individual and group levels. Pile driving induced short-term alarm responses at sound levels (in zero-peak) of 112–123 dB re 1 µm s−2 that were similar to those measured at kilometre scale from offshore windfarm constructions. The rate of individual alarm responses quickly decreased both within and across consecutive pile driving events, a result consistent with previous laboratory studies. Despite observing dramatic behavioural changes in response to initial pile driving sound, there were no significant differences in squid shoaling areas before and during exposure, showing no disruption of squid collective behaviours. Our results demonstrate rapid habituation of squid to pile driving sound, showing minimal effects on this ecologically and commercially key taxon. However, future work is now needed to assess responses of wild squid shoals in the vicinity of offshore windfarm constructions.
  • Article
    Soundscape enrichment increases larval settlement rates for the brooding coral Porites astreoides
    (Royal Society of Chemistry, 2024-03-13) Aoki, Nadege ; Weiss, Benjamin T. ; Jezequel, Youenn ; Zhang, Weifeng Gordon ; Apprill, Amy ; Mooney, T. Aran
    Coral reefs, hubs of global biodiversity, are among the world’s most imperilled habitats. Healthy coral reefs are characterized by distinctive soundscapes; these environments are rich with sounds produced by fishes and marine invertebrates. Emerging evidence suggests these sounds can be used as orientation and settlement cues for larvae of reef animals. On degraded reefs, these cues may be reduced or absent, impeding the success of larval settlement, which is an essential process for the maintenance and replenishment of reef populations. Here, in a field-based study, we evaluated the effects of enriching the soundscape of a degraded coral reef to increase coral settlement rates. Porites astreoides larvae were exposed to reef sounds using a custom solar-powered acoustic playback system. Porites astreoides settled at significantly higher rates at the acoustically enriched sites, averaging 1.7 times (up to maximum of seven times) more settlement compared with control reef sites without acoustic enrichment. Settlement rates decreased with distance from the speaker but remained higher than control levels at least 30 m from the sound source. These results reveal that acoustic enrichment can facilitate coral larval settlement at reasonable distances, offering a promising new method for scientists, managers and restoration practitioners to rebuild coral reefs.