Aoki Nadège

No Thumbnail Available
Last Name
Aoki
First Name
Nadège
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Acoustic properties and shallow water propagation distances of Caribbean spiny lobster sounds (Panulirus argus)
    (Acoustical Society of America, 2023-01-04) Jézéquel, Youenn ; Aoki, Nadège ; Mooney, T. Aran
    Marine crustaceans produce broadband sounds that are useful for passive acoustic monitoring to support conservation and management efforts. However, the propagation characteristics and detection ranges of their signals are poorly known, limiting our leveraging of these sounds. Here, we used a four-hydrophone linear array to measure source levels (SLs) and sound propagation from Caribbean spiny lobsters (Panulirus argus) of a wide range of sizes within a natural, shallow water habitat (3.3 m depth). Source level in peak-peak (SLpp) varied with body size; larger individuals produced SLpp up to 166 dB re 1 μPa. However, transmission losses (TL) were similar across all sizes, with a global fitted TL of 12.1 dB. Correspondingly, calculated detection ranges varied with body size, ranging between 14 and 364 m for small and large individuals (respectively). This increased up to 1612 m for large spiny lobsters when considering lower ambient noise levels. Despite the potential ease of tank studies, our results highlight the importance of empirical in situ sound propagation studies for marine crustaceans. Given the important ecological and economic role of spiny lobsters, these data are a key step to supporting remote monitoring of this species for fisheries management and efforts to acoustically quantify coral reefs' health.
  • Article
    Tank acoustics substantially distort broadband sounds produced by marine crustaceans
    (Acoustical Society of America, 2022-12-20) Jézéquel, Youenn ; Bonnel, Julien ; Aoki, Nadège ; Mooney, T. Aran
    Marine crustaceans produce broadband sounds that have been mostly characterized in tanks. While tank physical impacts on such signals are documented in the acoustic community, they are overlooked in the bioacoustic literature with limited empirical comparisons. Here, we compared broadband sounds produced at 1 m from spiny lobsters (Panulirus argus) in both tank and in situ conditions. We found significant differences in all sound features (temporal, power, and spectral) between tank and in situ recordings, highlighting that broadband sounds, such as those produced by marine crustaceans, cannot be accurately characterized in tanks. We then explained the three main physical impacts that distort broadband sounds in tanks, respectively known as resonant frequencies, sound reverberation, and low frequency attenuation. Tank resonant frequencies strongly distort the spectral shape of broadband sounds. In the high frequency band (above the tank minimum resonant frequency), reverberation increases sound duration. In the low frequency band (below the tank minimum resonant frequency), low frequencies are highly attenuated due to their longer wavelength compared to the tank size and tank wall boundary conditions (zero pressure) that prevent them from being accurately measured. Taken together, these results highlight the importance of understanding tank physical impacts when characterizing broadband crustacean sounds.
  • Article
    Ramicrusta invasive alga causes mortality in Caribbean coral larvae
    (Frontiers Media, 2023-04-18) Cayemitte, Kayla ; Aoki, Nadège ; Ferguson, Sophie R. ; Mooney, T. Aran ; Apprill, Amy
    The settlement of coral larvae is an important process which contributes to the success and longevity of coral reefs. Coral larvae often recruit to benthic structures covered with crustose coralline algae (CCA) which produce cues that promote settlement and metamorphosis. The Peysonneliaceae Ramicrusta spp. are red-brown encrusting alga that have recently become abundant on shallow Caribbean reefs, replacing CCA habitat, overgrowing corals and potentially threatening coral recruitment. In order to assess the threat of Ramicrusta to coral recruitment, we compared the survival and settlement of Porites astreoides and Favia fragum larvae to 0.5 – 2 mg ml -1 solutions of Ramicrusta sp. or CCA as well as sterile seawater (control). In all cases larval mortality was extremely high in the Ramicrusta treatments compared to the CCA and control treatments. We found 96% (± 8.9% standard deviation, SD) mortality of P. astreoides larvae when exposed to solutions of Ramicrusta and 0 - 4% (± 0 - 8.9% SD) mortality in the CCA treatments. We observed 100% F. fragum larval mortality when exposed to Ramicrusta and 5 – 10% (± 10 – 20% SD) mortality in the CCA treatments. Settlement or surface interaction of larvae in the CCA treatments was 40 - 68% (± 22 - 37% SD) for P. astreoides and 65 - 75% (± 10 - 19% SD) for F. fragum . Two P. astreoides larva that survived Ramicrusta exposure did settle/surface interact, suggesting that some larvae may be tolerant to Ramicrusta . These results suggest that Ramicrusta is a lethal threat to Caribbean coral recruitment.
  • Article
    Pile driving noise induces transient gait disruptions in the longfin squid (Doryteuthis pealeii)
    (Frontiers Media, 2022-12-15) Seth F. Cones ; Youenn Jézéquel ; Sophie Ferguson ; Nadège Aoki ; T. Aran Mooney
    Anthropogenic noise is now a prominent pollutant increasing in both terrestrial and marine environments. In the ocean, proliferating offshore windfarms, a key renewable energy source, are a prominent noise concern, as their pile driving construction is among the most intense anthropogenic sound sources. Yet, across taxa, there is little information of pile driving noise impacts on organismal fine-scale movement despite its key link to individual fitness. Here, we experimentally quantified the swimming behavior of an abundant squid species (Doryteuthis pealeii) of vital commercial and ecological importance in response to in situ pile driving activity on multiple temporal and spatial scales (thus exposed to differing received levels, or noise-doses). Pile driving induced energetically costly alarm-jetting behaviors in most (69%) individuals at received sound levels (in zero to peak) of 112-123 dB re 1 µm s-2, levels similar to those measured at the kilometer scale from some wind farm construction areas. No responses were found at a comparison site with lower received sound levels. Persistence of swimming pattern changes during noise-induced alarm responses, a key metric addressing energetic effects, lasted up to 14 s and were significantly shorter in duration than similar movement changes caused by natural conspecific interactions. Despite observing dramatic behavioral changes in response to initial pile driving noise, there was no evidence of gait changes over an experiment day. These results demonstrate that pile driving disrupts squid fine-scale movements, but impacts are short-lived suggesting that offshore windfarm construction may minimally impact the energetics of this ecologically key taxon. However, further work is needed to assess potential behavioral and physiological impacts at higher noise levels.