Monier Erwan

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 7 of 7
  • Article
    Description and evaluation of the MIT Earth System Model (MESM)
    (John Wiley & Sons, 2018-08-15) Sokolov, Andrei P. ; Kicklighter, David W. ; Schlosser, C. Adam ; Wang, Chien ; Monier, Erwan ; Brown-Steiner, Benjamin ; Prinn, Ronald G. ; Forest, Chris E. ; Gao, Xiang ; Libardoni, Alex ; Eastham, Sebastian
    The Massachusetts Institute of Technology Integrated Global System Model (IGSM) is designed for analyzing the global environmental changes that may result from anthropogenic causes, quantifying the uncertainties associated with the projected changes, and assessing the costs and environmental effectiveness of proposed policies to mitigate climate risk. The IGSM consists of the Massachusetts Institute of Technology Earth System Model (MESM) of intermediate complexity and the Economic Projections and Policy Analysis model. This paper documents the current version of the MESM, which includes a two‐dimensional (zonally averaged) atmospheric model with interactive chemistry coupled to the zonally averaged version of Global Land System model and an anomaly‐diffusing ocean model.
  • Article
    A review of and perspectives on global change modeling for Northern Eurasia
    (IOP Science, 2017-08-08) Monier, Erwan ; Kicklighter, David W. ; Sokolov, Andrei P. ; Zhuang, Qianlai ; Sokolik, Irina ; Lawford, Richard ; Kappas, Martin ; Paltsev, Sergey ; Groisman, Pavel Ya
    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human–Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human–Earth system.
  • Article
    Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia
    (Nature Research, 2019-07-09) Kicklighter, David W. ; Melillo, Jerry M. ; Monier, Erwan ; Sokolov, Andrei P. ; Zhuang, Qianlai
    Nitrogen (N) availability exerts strong control on carbon storage in the forests of Northern Eurasia. Here, using a process-based model, we explore how three factors that alter N availability—permafrost degradation, atmospheric N deposition, and the abandonment of agricultural land to forest regrowth (land-use legacy)—affect carbon storage in the region’s forest vegetation over the 21st century within the context of two IPCC global-change scenarios (RCPs 4.5 and 8.5). For RCP4.5, enhanced N availability results in increased tree carbon storage of 27.8 Pg C, with land-use legacy being the most important factor. For RCP8.5, enhanced N availability results in increased carbon storage in trees of 13.4 Pg C, with permafrost degradation being the most important factor. Our analysis reveals complex spatial and temporal patterns of regional carbon storage. This study underscores the importance of considering carbon-nitrogen interactions when assessing regional and sub-regional impacts of global change policies.
  • Article
    Climate impacts of a large-scale biofuels expansion
    (John Wiley & Sons, 2013-04-28) Hallgren, Willow ; Schlosser, C. Adam ; Monier, Erwan ; Kicklighter, David W. ; Sokolov, Andrei P. ; Melillo, Jerry M.
    A global biofuels program will potentially lead to intense pressures on land supply and cause widespread transformations in land use. These transformations can alter the Earth climate system by increasing greenhouse gas (GHG) emissions from land use changes and by changing the reflective and energy exchange characteristics of land ecosystems. Using an integrated assessment model that links an economic model with climate, terrestrial biogeochemistry, and biogeophysics models, we examined the biogeochemical and biogeophysical effects of possible land use changes from an expanded global second-generation bioenergy program on surface temperatures over the first half of the 21st century. Our integrated assessment model shows that land clearing, especially forest clearing, has two concurrent effects—increased GHG emissions, resulting in surface air warming; and large changes in the land's reflective and energy exchange characteristics, resulting in surface air warming in the tropics but cooling in temperate and polar regions. Overall, these biogeochemical and biogeophysical effects will only have a small impact on global mean surface temperature. However, the model projects regional patterns of enhanced surface air warming in the Amazon Basin and the eastern part of the Congo Basin. Therefore, global land use strategies that protect tropical forests could dramatically reduce air warming projected in these regions.
  • Article
    Northern Eurasia Future Initiative (NEFI) : facing the challenges and pathways of global change in the twenty-first century
    (Springer, 2017-12-27) Groisman, Pavel Ya ; Shugart, Herman ; Kicklighter, David W. ; Henebry, Geoffrey ; Tchebakova, Nadezhda ; Maksyutov, Shamil ; Monier, Erwan ; Gutman, Garik ; Gulev, Sergey ; Qi, Jiaguo ; Prishchepov, Alexander ; Kukavskaya, Elena ; Porfiriev, Boris ; Shiklomanov, Alexander ; Loboda, Tatiana ; Shiklomanov, Nikolay ; Nghiem, Son ; Bergen, Kathleen ; Albrechtová, Jana ; Chen, Jiquan ; Shahgedanova, Maria ; Shvidenko, Anatoly ; Speranskaya, Nina ; Soja, Amber ; de Beurs, Kirsten ; Bulygina, Olga N ; McCarty, Jessica ; Zhuang, Qianlai ; Zolina, Olga
    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts.
  • Article
    Toward a consistent modeling framework to assess multi-sectoral climate impacts
    (Nature Publishing Group, 2018-02-13) Monier, Erwan ; Paltsev, Sergey ; Sokolov, Andrei P. ; Chen, Y.-H. Henry ; Gao, Xiang ; Ejaz, Qudsia ; Couzo, Evan ; Schlosser, C. Adam ; Dutkiewicz, Stephanie ; Fant, Charles ; Scott, Jeffery ; Kicklighter, David W. ; Morris, Jennifer ; Jacoby, Henry D. ; Prinn, Ronald G. ; Haigh, Martin
    Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis—which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios—we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.
  • Article
    Historical and idealized climate model experiments : an intercomparison of Earth system models of intermediate complexity
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-05-16) Eby, Michael ; Weaver, Andrew J. ; Alexander, K. ; Zickfeld, K. ; Abe-Ouchi, A. ; Cimatoribus, A. A. ; Crespin, E. ; Drijfhout, Sybren ; Edwards, N. R. ; Eliseev, A. V. ; Feulner, G. ; Fichefet, T. ; Forest, Chris E. ; Goosse, H. ; Holden, P. B. ; Joos, Fortunat ; Kawamiya, M. ; Kicklighter, David W. ; Kienert, H. ; Matsumoto, K. ; Mokhov, I. I. ; Monier, Erwan ; Olsen, Steffen M. ; Pedersen, J. O. P. ; Perrette, M. ; Philippon-Berthier, G. ; Ridgwell, Andy ; Schlosser, A. ; Schneider von Deimling, T. ; Shaffer, G. ; Smith, R. S. ; Spahni, R. ; Sokolov, Andrei P. ; Steinacher, M. ; Tachiiri, K. ; Tokos, K. ; Yoshimori, M. ; Zeng, Ning ; Zhao, F.
    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.