Arey J. Samuel

No Thumbnail Available
Last Name
First Name
J. Samuel

Search Results

Now showing 1 - 2 of 2
  • Article
    Floating oil-covered debris from Deepwater Horizon : identification and application
    (IOP Publishing, 2012-01-18) Carmichael, Catherine A. ; Arey, J. Samuel ; Graham, William M. ; Linn, Laura J. ; Lemkau, Karin L. ; Nelson, Robert K. ; Reddy, Christopher M.
    The discovery of oiled and non-oiled honeycomb material in the Gulf of Mexico surface waters and along coastal beaches shortly after the explosion of Deepwater Horizon sparked debate about its origin and the oil covering it. We show that the unknown pieces of oiled and non-oiled honeycomb material collected in the Gulf of Mexico were pieces of the riser pipe buoyancy module of Deepwater Horizon. Biomarker ratios confirmed that the oil had originated from the Macondo oil well and had undergone significant weathering. Using the National Oceanic and Atmospheric Administration's records of the oil spill trajectory at the sea surface, we show that the honeycomb material preceded the front edge of the uncertainty of the oil slick trajectory by several kilometers. We conclude that the observation of debris fields deriving from damaged marine materials may be incorporated into emergency response efforts and forecasting of coastal impacts during future offshore oil spills, and ground truthing predicative models.
  • Article
    Simulating gas–liquid−water partitioning and fluid properties of petroleum under pressure : implications for deep-sea blowouts
    (American Chemical Society, 2016-04-27) Gros, Jonas ; Reddy, Christopher M. ; Nelson, Robert K. ; Socolofsky, Scott ; Arey, J. Samuel
    With the expansion of offshore petroleum extraction, validated models are needed to simulate the behaviors of petroleum compounds released in deep (>100 m) waters. We present a thermodynamic model of the densities, viscosities, and gas–liquid−water partitioning of petroleum mixtures with varying pressure, temperature, and composition based on the Peng–Robinson equation-of-state and the modified Henry’s law (Krychevsky−Kasarnovsky equation). The model is applied to Macondo reservoir fluid released during the Deepwater Horizon disaster, represented with 279–280 pseudocomponents, including 131–132 individual compounds. We define >n-C8 pseudocomponents based on comprehensive two-dimensional gas chromatography (GC × GC) measurements, which enable the modeling of aqueous partitioning for n-C8 to n-C26 fractions not quantified individually. Thermodynamic model predictions are tested against available laboratory data on petroleum liquid densities, gas/liquid volume fractions, and liquid viscosities. We find that the emitted petroleum mixture was ∼29–44% gas and ∼56–71% liquid, after cooling to local conditions near the broken Macondo riser stub (∼153 atm and 4.3 °C). High pressure conditions dramatically favor the aqueous dissolution of C1−C4 hydrocarbons and also influence the buoyancies of bubbles and droplets. Additionally, the simulated densities of emitted petroleum fluids affect previous estimates of the volumetric flow rate of dead oil from the emission source.