Joint
Ian
Joint
Ian
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
PreprintWill ocean acidification affect marine microbes?( 2010-05) Joint, Ian ; Doney, Scott C. ; Karl, David M.The pH of the surface ocean is changing as a result of increases in atmospheric carbon dioxide (CO2) and there are concerns about potential impacts of lower pH and associated alterations in seawater carbonate chemistry on the biogeochemical processes in the ocean. However, it is important to place these changes within the context of pH in the present day ocean, which is not constant; it varies systematically with season, depth and along productivity gradients. Yet this natural variability in pH has rarely been considered in assessments of the effect of ocean acidification on marine microbes. Surface pH can change as a consequence of microbial utilisation and production of carbon dioxide, and to a lesser extent other microbiallymediated processes such as nitrification. Useful comparisons can be made with microbes in other aquatic environments that readily accommodate very large and rapid pH change. For example, in many freshwater lakes, pH changes that are orders of magnitude greater than those projected for the 22nd century oceans can occur over periods of hours. Marine and freshwater assemblages have always experienced variable pH conditions. Therefore, an appropriate null hypothesis may be, until evidence is obtained to the contrary, that major biogeochemical processes in the oceans other than calcification will not be fundamentally different under future higher CO2 / lower pH conditions.
-
ArticleThe taxonomic and functional diversity of microbes at a temperate coastal site : a ‘multi-omic’ study of seasonal and diel temporal variation(Public Library of Science, 2010-11-29) Gilbert, Jack A. ; Field, Dawn ; Swift, Paul ; Thomas, Simon ; Cummings, Denise ; Temperton, Ben ; Weynberg, Karen ; Huse, Susan M. ; Hughes, Margaret ; Joint, Ian ; Somerfield, Paul J. ; Muhling, MartinHow microbial communities change over time in response to the environment is poorly understood. Previously a six-year time series of 16S rRNA V6 data from the Western English Channel demonstrated robust seasonal structure within the bacterial community, with diversity negatively correlated with day-length. Here we determine whether metagenomes and metatranscriptomes follow similar patterns. We generated 16S rRNA datasets, metagenomes (1.2 GB) and metatranscriptomes (157 MB) for eight additional time points sampled in 2008, representing three seasons (Winter, Spring, Summer) and including day and night samples. This is the first microbial ‘multi-omic’ study to combine 16S rRNA amplicon sequencing with metagenomic and metatranscriptomic profiling. Five main conclusions can be drawn from analysis of these data: 1) Archaea follow the same seasonal patterns as Bacteria, but show lower relative diversity; 2) Higher 16S rRNA diversity also reflects a higher diversity of transcripts; 3) Diversity is highest in winter and at night; 4) Community-level changes in 16S-based diversity and metagenomic profiles are better explained by seasonal patterns (with samples closest in time being most similar), while metatranscriptomic profiles are better explained by diel patterns and shifts in particular categories (i.e., functional groups) of genes; 5) Changes in key genes occur among seasons and between day and night (i.e., photosynthesis); but these samples contain large numbers of orphan genes without known homologues and it is these unknown gene sets that appear to contribute most towards defining the differences observed between times. Despite the huge diversity of these microbial communities, there are clear signs of predictable patterns and detectable stability over time. Renewed and intensified efforts are required to reveal fundamental deterministic patterns in the most complex microbial communities. Further, the presence of a substantial proportion of orphan sequences underscores the need to determine the gene products of sequences with currently unknown function.
-
PreprintThe seasonal structure of microbial communities in the Western English Channel( 2009-06-05) Gilbert, Jack A. ; Field, Dawn ; Swift, Paul ; Newbold, Lindsay K. ; Oliver, Anna E. ; Smyth, Tim J. ; Somerfield, Paul J. ; Huse, Susan M. ; Joint, IanVery few marine microbial communities are well characterized even with the weight of research effort presently devoted to it. Only a small proportion of this effort has been aimed at investigating temporal community structure. Here we present the first report of the application of high-throughput pyrosequencing to investigate intra-annual bacterial community structure. Microbial diversity was determined for 12 time points at the surface of the L4 sampling site in the Western English Channel. This was performed over 11 months during 2007. A total of 182,560 sequences from the V6 hyper-variable region of the small-subunit ribosomal RNA gene (16S rRNA) were obtained; there were between 11,327 and 17,339 reads per sample. Approximately 7000 genera were identified, with one in every 25 reads being attributed to a new genus; yet this level of sampling far from exhausted the total diversity present at any one time point. The total data set contained 17,673 unique sequences. Only 93 (0.5%) were found at all time-points, yet these few lineages comprised 50% of the total reads sequenced. The most abundant phylum was Proteobacteria (50% of all sequenced reads), while the SAR11 clade comprised 21% of the ubiquitous reads and ~12 % of the total sequenced reads. In contrast, 78% of all OTUs were only found at one time-point and 67% were only found once, evidence of a large and transient rare assemblage. This time-series shows evidence of seasonally structured community diversity. There is also evidence for seasonal succession, primarily reflecting changes among dominant taxa. These changes in structure were significantly correlated to a combination of temperature, phosphate and silicate concentrations.