Rotstein
Yair
Rotstein
Yair
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleSeismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault : implications for strain localization and crustal rigidity(American Geophysical Union, 2006-12-23) ten Brink, Uri S. ; Al-Zoubi, Abdallah S. ; Flores, Claudia H. ; Rotstein, Yair ; Qabbani, Isam ; Harder, Steven H. ; Keller, G. RandyNew seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust.
-
ArticleMagnetic character of a large continental transform : an aeromagnetic survey of the Dead Sea Fault(American Geophysical Union, 2007-07-13) ten Brink, Uri S. ; Rybakov, Michael ; Al-Zoubi, Abdallah S. ; Rotstein, YairNew high-resolution airborne magnetic (HRAM) data along a 120-km-long section of the Dead Sea Transform in southern Jordan and Israel shed light on the shallow structure of the fault zone and on the kinematics of the plate boundary. Despite infrequent seismic activity and only intermittent surface exposure, the fault is delineated clearly on a map of the first vertical derivative of the magnetic intensity, indicating that the source of the magnetic anomaly is shallow. The fault is manifested by a 10–20 nT negative anomaly in areas where the fault cuts through magnetic basement and by a <5 nT positive anomaly in other areas. Modeling suggests that the shallow fault is several hundred meters wide, in agreement with other geophysical and geological observations. A magnetic expression is observed only along the active trace of the fault and may reflect alteration of magnetic minerals due to fault zone processes or groundwater flow. The general lack of surface expression of the fault may reflect the absence of surface rupture during earthquakes. The magnetic data also indicate that unlike the San Andreas Fault, the location of this part of the plate boundary was stable throughout its history. Magnetic anomalies also support a total left-lateral offset of 105–110 km along the plate boundary, as suggested by others. Finally, despite previous suggestions of transtensional motion along the Dead Sea Transform, we did not identify any igneous intrusions related to the activity of this fault segment.