Ganju Neil K.

No Thumbnail Available
Last Name
First Name
Neil K.

Search Results

Now showing 1 - 20 of 54
  • Article
    Spatiotemporal variability of light attenuation and net ecosystem metabolism in a back-barrier estuary
    (European Geosciences Union, 2020-05-14) Ganju, Neil K. ; Testa, Jeremy M. ; Suttles, Steven E. ; Aretxabaleta, Alfredo L.
    Quantifying system-wide biogeochemical dynamics and ecosystem metabolism in estuaries is often attempted using a long-term continuous record at a single site or short-term records at multiple sites due to sampling limitations that preclude long-term monitoring. However, differences in the dominant primary producer at a given location (e.g., phytoplankton versus benthic producers) control diel variations in dissolved oxygen and associated ecosystem metabolism, and they may confound metabolic estimates that do not account for this variability. We hypothesize that even in shallow, well-mixed estuaries there is strong spatiotemporal variability in ecosystem metabolism due to benthic and water-column properties, as well as ensuing feedbacks to sediment resuspension, light attenuation, and primary production. We tested this hypothesis by measuring hydrodynamic properties, biogeochemical variables (fluorescent dissolved organic matter – fDOM, turbidity, chlorophyll a fluorescence, dissolved oxygen), and photosynthetically active radiation (PAR) over 1 year at 15 min intervals at paired channel (unvegetated) and shoal (vegetated by eelgrass) sites in Chincoteague Bay, Maryland–Virginia, USA, a shallow back-barrier estuary. Light attenuation (KdPAR) at all sites was dominated by turbidity from suspended sediment, with lower contributions from fDOM and chlorophyll a. However, there was significant seasonal variability in the resuspension–shear stress relationship on the vegetated shoals, but not in adjacent unvegetated channels. This indicated that KdPAR on the shoals was mediated by submerged aquatic vegetation (SAV) and possibly microphytobenthos presence in the summer, which reduced resuspension and therefore KdPAR. We also found that gross primary production (Pg) and KdPAR were significantly negatively correlated on the shoals and uncorrelated in the channels, indicating that Pg over the vegetated shoals is controlled by a feedback loop between benthic stabilization by SAV and/or microphytobenthos, sediment resuspension, and light availability. Metabolic estimates indicated substantial differences in net ecosystem metabolism between vegetated and unvegetated sites, with the former tending towards net autotrophy in the summer. Ongoing trends of SAV loss in this and other back-barrier estuaries suggest that these systems may also shift towards net heterotrophy, reducing their effectiveness as long-term carbon sinks. With regards to temporal variability, we found that varying sampling frequency between 15 min and 1 d resulted in comparable mean values of biogeochemical variables, but extreme values were missed by daily sampling. In fact, daily resampling minimized the variability between sites and falsely suggested spatial homogeneity in biogeochemistry, emphasizing the need for high-frequency sampling. This study confirms that properly quantifying ecosystem metabolism and associated biogeochemical variability requires characterization of the diverse estuarine environments, even in well-mixed systems, and demonstrates the deficiencies introduced by infrequent sampling to the interpretation of spatial variability.
  • Article
    Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary
    (John Wiley & Sons, 2017-01-11) Nowacki, Daniel J. ; Beudin, Alexis ; Ganju, Neil K.
    Submerged aquatic vegetation is generally thought to attenuate waves, but this interaction remains poorly characterized in shallow-water field settings with locally generated wind waves. Better quantification of wave–vegetation interaction can provide insight to morphodynamic changes in a variety of environments and also is relevant to the planning of nature-based coastal protection measures. Toward that end, an instrumented transect was deployed across a Zostera marina (common eelgrass) meadow in Chincoteague Bay, Maryland/Virginia, U.S.A., to characterize wind-wave transformation within the vegetated region. Field observations revealed wave-height reduction, wave-period transformation, and wave-energy dissipation with distance into the meadow, and the data informed and calibrated a spectral wave model of the study area. The field observations and model results agreed well when local wind forcing and vegetation-induced drag were included in the model, either explicitly as rigid vegetation elements or implicitly as large bed-roughness values. Mean modeled parameters were similar for both the explicit and implicit approaches, but the spectral performance of the explicit approach was poor compared to the implicit approach. The explicit approach over-predicted low-frequency energy within the meadow because the vegetation scheme determines dissipation using mean wavenumber and frequency, in contrast to the bed-friction formulations, which dissipate energy in a variable fashion across frequency bands. Regardless of the vegetation scheme used, vegetation was the most important component of wave dissipation within much of the study area. These results help to quantify the influence of submerged aquatic vegetation on wave dynamics in future model parameterizations, field efforts, and coastal-protection measures.
  • Article
    Simple metrics predict salt-marsh sediment fluxes
    (American Geophysical Union, 2019-11-09) Nowacki, Daniel J. ; Ganju, Neil K.
    The growth (or decay) of salt marshes depends on suspended‐sediment flux into and out of the marsh. Suspended‐sediment concentration (SSC) is a key element of the flux, and SSC‐based metrics reflect the long‐term sediment‐flux trajectories of a variety of salt marshes. One metric, the flood‐ebb SSC differential, correlates with area‐normalized sediment flux and can indicate salt‐marsh resilience over months to years. We hypothesize that these metrics may be relevant over shorter time periods. With data from 13 salt‐marsh channels, we show that sediment flux direction and magnitude can be inferred from SSC differential over a wide range of timescales. Furthermore, in settings characterized by a standing tidal wave, the water‐level gradient can be used instead of velocity to compute the SSC differential, enabling less‐intensive measurements that capture fundamental sediment‐flux parameters. Distilling the sediment‐flux trajectory into simple metrics improves sediment‐budget assessment, drives geomorphic model development, and clarifies field observations.
  • Article
    Seagrass impact on sediment exchange between tidal flats and salt marsh, and the sediment budget of shallow bays
    (John Wiley & Sons, 2018-05-20) Donatelli, Carmine ; Ganju, Neil K. ; Fagherazzi, Sergio ; Leonardi, Nicoletta
    Seagrasses are marine flowering plants that strongly impact their physical and biological surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled‐Ocean‐Atmosphere‐Wave‐Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long‐term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
  • Article
    Observations and a linear model of water level in an interconnected inlet-bay system
    (John Wiley & Sons, 2017-04-04) Aretxabaleta, Alfredo L. ; Ganju, Neil K. ; Butman, Bradford ; Signell, Richard P.
    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (∼0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.
  • Article
    A nonlinear relationship between marsh size and sediment trapping capacity compromises salt marshes' stability
    (Geological Society of America, 2020-10-01) Donatelli, Carmine ; Zhang, Xiaohe ; Ganju, Neil K. ; Aretxabaleta, Alfredo L. ; Fagherazzi, Sergio ; Leonardi, Nicoletta
    Global assessments predict the impact of sea-level rise on salt marshes with present-day levels of sediment supply from rivers and the coastal ocean. However, these assessments do not consider that variations in marsh extent and the related reconfiguration of intertidal area affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. We conducted a meta-analysis of six bays along the United States East Coast to show that a reduction in the current salt marsh area decreases the sediment availability in estuarine systems through changes in regional-scale hydrodynamics. This positive feedback between marsh disappearance and the ability of coastal bays to retain sediments reduces the trapping capacity of the whole tidal system and jeopardizes the survival of the remaining marshes. We show that on marsh platforms, the sediment deposition per unit area decreases exponentially with marsh loss. Marsh erosion enlarges tidal prism values and enhances the tendency toward ebb dominance, thus decreasing the overall sediment availability of the system. Our findings highlight that marsh deterioration reduces the sediment stock in back-barrier basins and therefore compromises the resilience of salt marshes.
  • Article
    Simulated estuary-wide response of seagrass (Zostera marina) to future scenarios of temperature and sea level
    (Frontiers Media, 2020-10-21) Scalpone, Cara R. ; Jarvis, Jessie C. ; Vasslides, James ; Testa, Jeremy M. ; Ganju, Neil K.
    Seagrass communities are a vital component of estuarine ecosystems, but are threatened by projected sea level rise (SLR) and temperature increases with climate change. To understand these potential effects, we developed a spatially explicit model that represents seagrass (Zostera marina) habitat and estuary-wide productivity for Barnegat Bay-Little Egg Harbor (BB-LEH) in New Jersey, United States. Our modeling approach included an offline coupling of a numerical seagrass biomass model with the spatially variable environmental conditions from a hydrodynamic model to calculate above and belowground biomass at each grid cell of the hydrodynamic model domain. Once calibrated to represent present day seagrass habitat and estuary-wide annual productivity, we applied combinations of increasing air temperature and sea level following regionally specific climate change projections, enabling analysis of the individual and combined impacts of these variables on seagrass biomass and spatial coverage. Under the SLR scenarios, the current model domain boundaries were maintained, as the land surrounding BB-LEH is unlikely to shift significantly in the future. SLR caused habitat extent to decrease dramatically, pushing seagrass beds toward the coastline with increasing depth, with a 100% loss of habitat by the maximum SLR scenario. The dramatic loss of seagrass habitat under SLR was in part due to the assumption that surrounding land would not be inundated, as the model did not allow for habitat expansion outside the current boundaries of the bay. Temperature increases slightly elevated the rate of summer die-off and decreased habitat area only under the highest temperature increase scenarios. In combined scenarios, the effects of SLR far outweighed the effects of temperature increase. Sensitivity analysis of the model revealed the greatest sensitivity to changes in parameters affecting light limitation and seagrass mortality, but no sensitivity to changes in nutrient limitation constants. The high vulnerability of seagrass in the bay to SLR exceeded that demonstrated for other systems, highlighting the importance of site- and region-specific assessments of estuaries under climate change.
  • Article
    Salt marsh erosion rates and boundary features in a shallow Bay
    (John Wiley & Sons, 2016-10-22) Leonardi, Nicoletta ; Defne, Zafer ; Ganju, Neil K. ; Fagherazzi, Sergio
    Herein, we investigate the relationship between wind waves, salt marsh erosion rates, and the planar shape of marsh boundaries by using aerial images and the numerical model Coupled-Ocean-Atmosphere-Wave-Sediment-Transport Modeling System (COAWST). Using Barnegat Bay, New Jersey, as a test site, we found that salt marsh erosion rates maintain a similar trend in time. We also found a significant relationship between salt marsh erosion rates and the shape of marsh boundaries which could be used as a geomorphic indicator of the degradation level of the marsh. Slowly eroding salt marshes are irregularly shaped with fractal dimension higher than rapidly deteriorating marshes. Moreover, for low-wave energy conditions, there is a high probability of isolated and significantly larger than average failures of marsh portions causing a long-tailed distribution of localized erosion rates. Finally, we confirm the existence of a significant relationship between salt marsh erosion rate and wind waves exposure. Results suggest that variations in time in the morphology of salt marsh boundaries could be used to infer changes in frequency and magnitude of external agents.
  • Article
    Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements
    (Association for the Sciences of Limnology and Oceanography, 2011-07) Bergamaschi, Brian A. ; Fleck, Jacob A. ; Downing, Bryan D. ; Boss, Emmanuel S. ; Pellerin, Brian A. ; Ganju, Neil K. ; Schoellhamer, David H. ; Byington, Amy A. ; Heim, Wesley A. ; Stephenson, Mark ; Fujii, Roger
    We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 µg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.
  • Article
    Representing the function and sensitivity of coastal interfaces in earth system models
    (Nature Research, 2020-05-18) Ward, Nicholas D. ; Megonigal, J. Patrick ; Bond-Lamberty, Benjamin ; Bailey, Vanessa L. ; Butman, David ; Canuel, Elizabeth A. ; Diefenderfer, Heida ; Ganju, Neil K. ; Goni, Miguel ; Graham, Emily B. ; Hopkinson, Charles S. ; Khangaonkar, Tarang ; Langley, J. Adam ; McDowell, Nate G. ; Myers-Pigg, Allison N. ; Neumann, Rebecca B. ; Osburn, Christopher L. ; Price, René M. ; Rowland, Joel ; Sengupta, Aditi ; Simard, Marc ; Thornton, Peter E. ; Tzortziou, Maria ; Vargas, Rodrigo ; Weisenhorn, Pamela B. ; Windham-Myers, Lisamarie
    Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.
  • Article
    Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply
    (Springer, 2009-12-19) Ganju, Neil K. ; Schoellhamer, David H.
    Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.
  • Article
    Spatial distribution of water level impacting back-barrier bays
    (European Geosciences Union, 2019-08-20) Aretxabaleta, Alfredo L. ; Ganju, Neil K. ; Defne, Zafer ; Signell, Richard P.
    Water level in semi-enclosed bays, landward of barrier islands, is mainly driven by offshore sea level fluctuations that are modulated by bay geometry and bathymetry, causing spatial variability in the ensuing response (transfer). Local wind setup can have a complementary role that depends on wind speed, fetch, and relative orientation of the wind direction and the bay. Bay area and inlet geometry and bathymetry primarily regulate the magnitude of the transfer between open ocean and bay. Tides and short-period offshore oscillations are more damped in the bays than longer-lasting offshore fluctuations, such as a storm surge and sea level rise. We compare observed and modeled water levels at stations in a mid-Atlantic bay (Barnegat Bay) with offshore water level proxies. Observed water levels in Barnegat Bay are compared and combined with model results from the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system to evaluate the spatial structure of the water level transfer. Analytical models based on the dimensional characteristics of the bay are used to combine the observed data and the numerical model results in a physically consistent approach. Model water level transfers match observed values at locations inside the bay in the storm frequency band (transfers ranging from 50 %–100 %) and tidal frequencies (10 %–55 %). The contribution of frequency-dependent local setup caused by wind acting along the bay is also considered. The wind setup effect can be comparable in magnitude to the offshore transfer forcing during intense storms. The approach provides transfer estimates for locations inside the bay where observations were not available, resulting in a complete spatial characterization. An extension of the methodology that takes advantage of the ADCIRC tidal database for the east coast of the United States allows for the expansion of the approach to other bay systems. Detailed spatial estimates of water level transfer can inform decisions on inlet management and contribute to the assessment of current and future flooding hazard in back-barrier bays and along mainland shorelines.
  • Article
    Tidal and groundwater fluxes to a shallow, microtidal estuary : constraining inputs through field observations and hydrodynamic modeling
    (Springer, 2012-05-30) Ganju, Neil K. ; Hayn, Melanie ; Chen, Shih-Nan ; Howarth, Robert W. ; Dickhudt, Patrick J. ; Aretxabaleta, Alfredo L. ; Marino, Roxanne
    Increased nutrient loading to estuaries has led to eutrophication, degraded water quality, and ecological transformations. Quantifying nutrient loads in systems with significant groundwater input can be difficult due to the challenge of measuring groundwater fluxes. We quantified tidal and freshwater fluxes over an 8-week period at the entrance of West Falmouth Harbor, Massachusetts, a eutrophic, groundwater-fed estuary. Fluxes were estimated from velocity and salinity measurements and a total exchange flow (TEF) methodology. Intermittent cross-sectional measurements of velocity and salinity were used to convert point measurements to cross-sectionally averaged values over the entire deployment (index relationships). The estimated mean freshwater flux (0.19 m3/s) for the 8-week period was mainly due to groundwater input (0.21 m3/s) with contributions from precipitation to the estuary surface (0.026 m3/s) and removal by evaporation (0.048 m3/s). Spring–neap variations in freshwater export that appeared in shorter-term averages were mostly artifacts of the index relationships. Hydrodynamic modeling with steady groundwater input demonstrated that while the TEF methodology resolves the freshwater flux signal, calibration of the index– salinity relationships during spring tide conditions only was responsible for most of the spring–neap signal. The mean freshwater flux over the entire period estimated from the combination of the index-velocity, index–salinity, and TEF calculations were consistent with the model, suggesting that this methodology is a reliable way of estimating freshwater fluxes in the estuary over timescales greater than the spring– neap cycle. Combining this type of field campaign with hydrodynamic modeling provides guidance for estimating both magnitude of groundwater input and estuarine storage of freshwater and sets the stage for robust estimation of the nutrient load in groundwater.
  • Article
    Progress and challenges in coupled hydrodynamic-ecological estuarine modeling
    (Springer, 2015-07-07) Ganju, Neil K. ; Brush, Mark J. ; Rashleigh, Brenda ; Aretxabaleta, Alfredo L. ; del Barrio, Pilar ; Grear, Jason S. ; Harris, Lora A. ; Lake, Samuel J. ; McCardell, Grant ; O’Donnell, James ; Ralston, David K. ; Signell, Richard P. ; Testa, Jeremy M. ; Vaudrey, Jamie M. P.
    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
  • Article
    Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region
    (Association for the Sciences of Limnology and Oceanography, 2022-05-31) Molino, Grace D. ; Carr, Joel A. ; Ganju, Neil K. ; Kirwan, Matthew L.
    Sea level rise (SLR) and saltwater intrusion are driving inland shifts in coastal ecosystems. Here, we make high-resolution (1 m) predictions of land conversion under future SLR scenarios in 81 watersheds surrounding Chesapeake Bay, United States, a hotspot for accelerated SLR and saltwater intrusion. We find that 1050–3748 km2 of marsh could be created by 2100, largely at the expense of forested wetlands. Predicted marsh migration exceeds total current tidal marsh area and is ~ 4× greater than historical observations. Anthropogenic land use in marsh migration areas is concentrated within a few watersheds and minimally impacts calculated metrics of marsh resilience. Despite regional marsh area maintenance, local ecosystem service replacement within vulnerable watersheds remains uncertain. However, our work suggests that topography rather than land use drives spatial variability in wetland vulnerability regionally, and that rural land conversion is needed to compensate for extensive areal losses on heavily developed coasts globally.
  • Article
    Dataset of numerical modelling results of wave thrust on salt marsh boundaries with different seagrass coverages in a shallow back-barrier estuary
    (Elsevier, 2019-07-06) Donatelli, Carmine ; Ganju, Neil K. ; Kalra, Tarandeep S. ; Fagherazzi, Sergio ; Leonardi, Nicoletta
    This article contains data on the effects of seagrass decline on wave energy along the shoreline of Barnegat Bay (USA) previously evaluated in Donatelli et al., 2019. This study was carried out applying the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modelling framework to six historical maps of seagrass distribution. A new routine recently implemented in COAWST was used, which explicitly computes the wave thrust acting on salt marsh boundaries. The numerical modelling results are reported in terms of wind-wave heights for different seagrass coverages, wind speeds and directions. From a comparison with a numerical experiment without submerged aquatic vegetation, we show how the computed wave thrust on marsh boundaries can be reduced by seagrass beds.
  • Article
    Quantification of storm-induced bathymetric change in a back-barrier estuary
    (Springer, 2016-07-26) Ganju, Neil K. ; Suttles, Steven E. ; Beudin, Alexis ; Nowacki, Daniel J. ; Miselis, Jennifer L. ; Andrews, Brian D.
    Geomorphology is a fundamental control on ecological and economic function of estuaries. However, relative to open coasts, there has been little quantification of storm-induced bathymetric change in back-barrier estuaries. Vessel-based and airborne bathymetric mapping can cover large areas quickly, but change detection is difficult because measurement errors can be larger than the actual changes over the storm timescale. We quantified storm-induced bathymetric changes at several locations in Chincoteague Bay, Maryland/Virginia, over the August 2014 to July 2015 period using fixed, downward-looking altimeters and numerical modeling. At sand-dominated shoal sites, measurements showed storm-induced changes on the order of 5 cm, with variability related to stress magnitude and wind direction. Numerical modeling indicates that the predominantly northeasterly wind direction in the fall and winter promotes southwest-directed sediment transport, causing erosion of the northern face of sandy shoals; southwesterly winds in the spring and summer lead to the opposite trend. Our results suggest that storm-induced estuarine bathymetric change magnitudes are often smaller than those detectable with methods such as LiDAR. More precise fixed-sensor methods have the ability to elucidate the geomorphic processes responsible for modulating estuarine bathymetry on the event and seasonal timescale, but are limited spatially. Numerical modeling enables interpretation of broad-scale geomorphic processes and can be used to infer the long-term trajectory of estuarine bathymetric change due to episodic events, when informed by fixed-sensor methods.
  • Article
    Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes
    (Nature Publishig Group, 2017-01-23) Ganju, Neil K. ; Defne, Zafer ; Kirwan, Matthew L. ; Fagherazzi, Sergio ; D’Alpaos, Andrea ; Carniello, Luca
    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.
  • Article
    A geospatially resolved wetland vulnerability index: synthesis of physical drivers
    (Public Library of Science, 2020-01-30) Defne, Zafer ; Aretxabaleta, Alfredo L. ; Ganju, Neil K. ; Kalra, Tarandeep S. ; Jones, Daniel K. ; Smith, Kathryn E. L.
    Assessing wetland vulnerability to chronic and episodic physical drivers is fundamental for establishing restoration priorities. We synthesized multiple data sets from E.B. Forsythe National Wildlife Refuge, New Jersey, to establish a wetland vulnerability metric that integrates a range of physical processes, anthropogenic impact and physical/biophysical features. The geospatial data are based on aerial imagery, remote sensing, regulatory information, and hydrodynamic modeling; and include elevation, tidal range, unvegetated to vegetated marsh ratio (UVVR), shoreline erosion, potential exposure to contaminants, residence time, marsh condition change, change in salinity, salinity exposure and sediment concentration. First, we delineated the wetland complex into individual marsh units based on surface contours, and then defined a wetland vulnerability index that combined contributions from all parameters. We applied principal component and cluster analyses to explore the interrelations between the data layers, and separate regions that exhibited common characteristics. Our analysis shows that the spatial variation of vulnerability in this domain cannot be explained satisfactorily by a smaller subset of the variables. The most influential factor on the vulnerability index was the combined effect of elevation, tide range, residence time, and UVVR. Tide range and residence time had the highest correlation, and similar bay-wide spatial variation. Some variables (e.g., shoreline erosion) had no significant correlation with the rest of the variables. The aggregated index based on the complete dataset allows us to assess the overall state of a given marsh unit and quickly locate the most vulnerable units in a larger marsh complex. The application of geospatially complete datasets and consideration of chronic and episodic physical drivers represents an advance over traditional point-based methods for wetland assessment.
  • Article
    Modeling the dynamics of salt marsh development in coastal land reclamation
    (American Geophysical Union, 2022-03-16) Xu, Yiyang ; Kalra, Tarandeep S. ; Ganju, Neil K. ; Fagherazzi, Sergio
    The valuable ecosystem services of salt marshes are spurring marsh restoration projects around the world. However, it is difficult to determine the final vegetated area based on physical drivers. Herein, we use a 3D fully coupled vegetation-hydrodynamic-morphological modeling system to simulate the final vegetation cover and the timescale to reach it under various forcing conditions. Marsh development in our simulations can be divided in three distinctive phases: A preparation phase characterized by sediment accumulation in the absence of vegetation, an encroachment phase in which the vegetated area grows, and an adjustment phase in which the vegetated area remains relatively constant while marsh accretes vertically to compensate for sea level rise. Sediment concentration, settling velocity, sea level rise, and tidal range each comparably affect equilibrium coverage and timescale in different ways. Our simulations show that the Unvegetated-Vegetated Ratio also relates to sediment budget in marsh development under most conditions.