Carter Melissa L.

No Thumbnail Available
Last Name
First Name
Melissa L.

Search Results

Now showing 1 - 2 of 2
  • Article
    Satellite detection of dinoflagellate blooms off California by UV reflectance ratios
    (University of California Press, 2021-06-09) Kahru, Mati ; Anderson, Clarissa ; Barton, Andrew D. ; Carter, Melissa L. ; Catlett, Dylan ; Send, Uwe ; Sosik, Heidi M. ; Weiss, Elliot L. ; Mitchell, B. Gregory
    As harmful algae blooms are increasing in frequency and magnitude, one goal of a new generation of higher spectral resolution satellite missions is to improve the potential of satellite optical data to monitor these events. A satellite-based algorithm proposed over two decades ago was used for the first time to monitor the extent and temporal evolution of a massive bloom of the dinoflagellate Lingulodinium polyedra off Southern California during April and May 2020. The algorithm uses ultraviolet (UV) data that have only recently become available from the single ocean color sensor on the Japanese GCOM-C satellite. Dinoflagellates contain high concentrations of mycosporine-like amino acids and release colored dissolved organic matter, both of which absorb strongly in the UV part of the spectrum. Ratios <1 of remote sensing reflectance of the UV band at 380 nm to that of the blue band at 443 nm were used as an indicator of the dinoflagellate bloom. The satellite data indicated that an observed, long, and narrow nearshore band of elevated chlorophyll-a (Chl-a) concentrations, extending from northern Baja to Santa Monica Bay, was dominated by L. polyedra. In other high Chl-a regions, the ratios were >1, consistent with historical observations showing a sharp transition from dinoflagellate- to diatom-dominated waters in these areas. UV bands are thus potentially useful in the remote sensing of phytoplankton blooms but are currently available only from a single ocean color sensor. As several new satellites such as the NASA Plankton, Aerosol, Cloud, and marine Ecosystem mission will include UV bands, new algorithms using these bands are needed to enable better monitoring of blooms, especially potentially harmful algal blooms, across large spatiotemporal scales.
  • Article
    Iron-binding ligands in the Southern California Current System : mechanistic studies
    (Frontiers Media, 2016-03-15) Bundy, Randelle M. ; Jiang, Mingshun ; Carter, Melissa ; Barbeau, Katherine A.
    The distributions of dissolved iron and organic iron-binding ligands were examined in water column profiles and deckboard incubation experiments in the southern California Current System (sCCS) along a transition from coastal to semi-oligotrophic waters. Analysis of the iron-binding ligand pool by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) using multiple analytical windows (MAWs) revealed three classes of iron-binding ligands present throughout the water column (L1−L3), whose distributions closely matched those of dissolved iron and nitrate. Despite significant biogeochemical gradients, ligand profiles were similar between stations, with surface minima in strong ligands (L1 and L2), and relatively constant concentrations of weaker ligands (L3) down to 500 m. A phytoplankton grow-out incubation, initiated from an iron-limited water mass, showed dynamic temporal cycling of iron-binding ligands. A biological iron model was able to capture the patterns of the strong ligands in the grow-out incubation relatively well with only the microbial community as a biological source. An experiment focused on remineralization of particulate organic matter showed production of both strong and weak iron-binding ligands by the heterotrophic community, supporting a mechanism for in-situ production of both strong and weak iron-binding ligands in the subsurface water column. Photochemical experiments showed a variable influence of sunlight on the degradation of natural iron-binding ligands, providing some evidence to explain differences in surface ligand concentrations between stations. Patterns in ligand distributions between profiles and in the incubation experiments were primarily related to macronutrient concentrations, suggesting microbial remineralization processes might dominate on longer time-scales over short-term changes associated with photochemistry or phytoplankton growth.