Marjanovic Milena

No Thumbnail Available
Last Name
Marjanovic
First Name
Milena
ORCID
0000-0001-7580-5821

Search Results

Now showing 1 - 3 of 3
  • Article
    Discovery of active off-axis hydrothermal vents at 9° 54’N East Pacific Rise
    (National Academy of Sciences, 2022-07-21) McDermott, Jill M. ; Parnell-Turner, Ross ; Barreyre, Thibaut ; Herrera, Santiago ; Downing, Connor C. ; Pittoors, Nicole C. ; Pehr, Kelden ; Vohsen, Samuel A. ; Dowd, William S. ; Wu, Jyun-Nai ; Marjanovic, Milena ; Fornari, Daniel J.
    Comprehensive knowledge of the distribution of active hydrothermal vent fields along midocean ridges is essential to understanding global chemical and heat fluxes and endemic faunal distributions. However, current knowledge is biased by a historical preference for on-axis surveys. A scarcity of high-resolution bathymetric surveys in off-axis regions limits vent identification, which implies that the number of vents may be underestimated. Here, we present the discovery of an active, high-temperature, off-axis hydrothermal field on a fast-spreading ridge. The vent field is located 750 m east of the East Pacific Rise axis and ∼7 km north of on-axis vents at 9° 50′N, which are situated in a 50- to 100-m-wide trough. This site is currently the largest vent field known on the East Pacific Rise between 9 and 10° N. Its proximity to a normal fault suggests that hydrothermal fluid pathways are tectonically controlled. Geochemical evidence reveals deep fluid circulation to depths only 160 m above the axial magma lens. Relative to on-axis vents at 9° 50′N, these off-axis fluids attain higher temperatures and pressures. This tectonically controlled vent field may therefore exhibit greater stability in fluid composition, in contrast to more dynamic, dike-controlled, on-axis vents. The location of this site indicates that high-temperature convective circulation cells extend to greater distances off axis than previously realized. Thorough high-resolution mapping is necessary to understand the distribution, frequency, and physical controls on active off-axis vent fields so that their contribution to global heat and chemical fluxes and role in metacommunity dynamics can be determined.
  • Article
    Constraints on melt content of off-axis magma lenses at the East Pacific Rise from analysis of 3-D seismic amplitude variation with angle of incidence
    (John Wiley & Sons, 2017-06-28) Aghaei, Omid ; Nedimovic, Mladen R. ; Marjanovic, Milena ; Carbotte, Suzanne M. ; Canales, J. Pablo ; Carton, Helene ; Nikić, Nikola
    We use 3-D multichannel seismic data to form partial angle P wave stacks and apply amplitude variation with angle (AVA) crossplotting to assess melt content and melt distribution within two large midcrustal off-axis magma lenses (OAMLs) found along the East Pacific Rise from 9°37.5′N to 9°57′N. The signal envelope of the partial angle stacks suggests that both OAMLs are partially molten with higher average melt content and more uniform melt distribution in the southern OAML than in the northern OAML. For AVA crossplotting, the OAMLs are subdivided into seven ~1 km2 analysis windows. The AVA crossplotting results indicate that the OAMLs contain a smaller amount of melt than the axial magma lens (AML). For both OAMLs, a higher melt fraction is detected within analysis windows located close to the ridge axis than within the most distant windows. The highest average melt concentration is interpreted for the central sections of the OAMLs. The overall low OAML melt content could be indicative of melt lost due to recent off-axis eruptions, drainage to the AML, or limited mantle melt supply. Based on the results of this and earlier bathymetric, morphological, geochemical, and geophysical investigations, we propose that the melt-poor OAML state is largely the result of limited melt supply from the underlying mantle source reservoir with smaller contribution attributed to melt leakage to the AML. We hypothesize that the investigated OAMLs have a longer period of melt replenishment, lower eruption recurrence rates, and lower eruption volumes than the AML, though some could be single intrusion events.
  • Article
    Crustal magmatic system beneath the east pacific rise (8 degrees 20 to 10 degrees 10N): Implications for tectonomagmatic segmentation and crustal melt transport at fast-spreading ridges
    (American Geophysical Union, 2018-11-06) Marjanovic, Milena ; Carbotte, Suzanne M. ; Carton, Helene ; Nedimovic, Mladen R. ; Canales, J. Pablo ; Mutter, John C.
    Detailed images of the midcrustal magmatic system beneath the East Pacific Rise (8°20′–10°10′N) are obtained from 2‐D and 3‐D‐swath processing of along axis seismic data and are used to characterize properties of the axial crust, cross‐axis variations, and relationships with structural segmentation of the axial zone. Axial magma lens (AML) reflections are imaged beneath much of the ridge axis (mean depth 1,640 ± 185 m), as are deeper sub‐AML (SAML) reflections (brightest events ~100–800 m below AML). Local shallow regions in the AML underlie two regions of shallow seafloor depth from 9°40′–55′N and 8°26′–33′N. Enhanced magma replenishment at present beneath both sites is inferred and may be linked to nearby off‐axis volcanic chains. SAML reflections, which are observed primarily from 9°20′ to 10°05′N, indicate a finely segmented magma reservoir similar to the AML above, composed of subhorizontal, 2‐ to 7 km‐long AML segments, often with stepwise changes in reflector depth from one segment to the next. We infer that these melt bodies are related to short‐lived melt instability zones. In many locations including where seismic constraints are strongest the intermediate scale (~15–40 km) structural segmentation of the ridge axis identified in this region coincides with (1) changes in average thickness of layer 2A (by 10%–15%), (2) changes in average depth of AML (<100 m), and (3) with the spacing of punctuated low velocity zones mapped in the uppermost mantle. The ~6 km dominant length of multiple AML segments within each of the larger structural segments may reflect the spacing of local sites of ascending magma from discrete melt reservoirs pooled beneath the crust.