Barth John A.

No Thumbnail Available
Last Name
First Name
John A.

Search Results

Now showing 1 - 8 of 8
  • Article
    Northern Monterey Bay upwelling shadow front : observations of a coastally and surface-trapped buoyant plume
    (American Geophysical Union, 2009-12-10) Woodson, C. B. ; Washburn, Libe ; Barth, John A. ; Hoover, D. J. ; Kirincich, Anthony R. ; McManus, M. A. ; Ryan, John P. ; Tyburczy, Joe
    During the upwelling season in central California, northwesterly winds along the coast produce a strong upwelling jet that originates at Point Año Nuevo and flows southward across the mouth of Monterey Bay. A convergent front with a mean temperature change of 3.77 ± 0.29°C develops between the warm interior waters and the cold offshore upwelling jet. To examine the forcing mechanisms driving the location and movement of the upwelling shadow front and its effects on biological communities in northern Monterey Bay, oceanographic conditions were monitored using cross-shelf mooring arrays, drifters, and hydrographic surveys along a 20 km stretch of coast extending northwestward from Santa Cruz, California, during the upwelling season of 2007 (May–September). The alongshore location of the upwelling shadow front at the northern edge of the bay was driven by: regional wind forcing, through an alongshore pressure gradient; buoyancy forces due to the temperature change across the front; and local wind forcing (the diurnal sea breeze). The upwelling shadow front behaved as a surface-trapped buoyant current, which is superimposed on a poleward barotropic current, moving up and down the coast up to several kilometers each day. We surmise that the front is advected poleward by a preexisting northward barotropic current of 0.10 m s−1 that arises due to an alongshore pressure gradient caused by focused upwelling at Point Año Nuevo. The frontal circulation (onshore surface currents) breaks the typical two-dimensional wind-driven, cross-shelf circulation (offshore surface currents) and introduces another way for water, and the material it contains (e.g., pollutants, larvae), to go across the shelf toward shore.
  • Article
    The Ocean Observatories Initiative
    (Frontiers Media, 2019-03-04) Trowbridge, John H. ; Weller, Robert A. ; Kelley, Deborah S. ; Dever, Edward P. ; Plueddemann, Albert J. ; Barth, John A. ; Kawka, Orest
    The Ocean Observatories Initiative (OOI) is an integrated network that enables scientific investigation of interlinked physical, chemical, biological and geological processes throughout the global ocean. With near real-time data delivery via a common Cyberinfrastructure, the OOI instruments two contrasting ocean systems at three scales. The Regional Cabled Array instruments a tectonic plate and overlying ocean in the northeast Pacific, providing a permanent electro-optical cable connecting multiple seafloor nodes that provide high power and bandwidth to seafloor sensors and moorings with instrumented wire crawlers, all with speed-of-light interactive capabilities. Coastal arrays include the Pioneer Array, a relocatable system currently quantifying the New England shelf-break front, and the Endurance Array, a fixed system off Washington and Oregon with connections to the Regional Cabled Array. The Global Arrays host deep-ocean moorings and gliders to provide interdisciplinary measurements of the water column, mesoscale variability, and air-sea fluxes at critical high latitude locations. The OOI has unique aspects relevant to the international ocean observing community. The OOI uses common sensor types, verification protocols, and data formats across multiple platform types in diverse oceanographic regimes. OOI observing is sustained, with initial deployment in 2013 and 25 years of operation planned. The OOI is distributed among sites selected for scientific relevance based on community input and linked by important oceanographic processes. Scientific highlights include real-time observations of a submarine volcanic eruption, time-series observations of methane bubble plumes from Southern Hydrate Ridge off Oregon, observations of anomalous low-salinity pulses off Oregon, discovery of new mechanisms for intrusions of the Gulf Stream onto the shelf in the Middle Atlantic Bight, documentation of deep winter convection in the Irminger Sea, and observations of extreme surface forcing at the most southerly surface mooring in the world ocean.
  • Thesis
    Stability of a coastal upwelling front over topography
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1987-10) Barth, John A.
    A two-layer shallow water equation model is used to investigate the linear stability of a coastal upwelling front. The model features a surface front near a coastal boundary and bottom topography which is an arbitrary function of the cross-shelf coordinate. By combining the various conservation statements for the global properties of the system, a general stability theorem is established which allows the a priori determination of the stability of a coastal upwelling front. Unstable waves are found for the modelled coastal upwelling front. The unstable wave motions are frontally-trapped and dominant in the upper layer. The wave propagates phase in the direction of the basic state flow and the primary energy conversion is via baroclinic instability. The effect of varying the model parameters is presented. Moving the front closer than ~ 2 Rossby radii to the coastal boundary results in a decrease in the growth rate of the fastest growing wave. Increasing the overall vertical shear of the basic state flow, by either decreasing the lower layer depth or increasing the steepness of the interface, results in an increase in the growth of the fastest growing wave. A bottom sloping in the same sense as the interface results in a decrease of the growth rates and alongfront wavenumbers of the unstable waves in the system. Linearized bottom friction is included in the stability model and results in a decrease in the growth rates of the unstable waves by extracting energy from the system. Since the unstable mode is strongest in the upper layer, bottom friction will not stabilize the upwelling front. A comparison between the predictions from the simple two-layer model and observed alongfront variability for three areas of active upwelling is presented. Reasonable agreement is found, suggesting that observed alongfront variability can be interpreted in terms of the instability of a coastal upwelling front.
  • Article
    The Ocean Observatories Initiative
    (The Oceanography Society, 2018-02-09) Smith, Leslie M. ; Barth, John A. ; Kelley, Deborah S. ; Plueddemann, Albert J. ; Rodero, Ivan ; Ulses, Greg A. ; Vardaro, Michael F. ; Weller, Robert A.
    The Ocean Observatories Initiative (OOI) is an integrated suite of instrumented platforms and discrete instruments that measure physical, chemical, geological, and biological properties from the seafloor to the sea surface. The OOI provides data to address large-scale scientific challenges such as coastal ocean dynamics, climate and ecosystem health, the global carbon cycle, and linkages among seafloor volcanism and life. The OOI Cyberinfrastructure currently serves over 250 terabytes of data from the arrays. These data are freely available to users worldwide, changing the way scientists and the broader community interact with the ocean, and permitting ocean research and inquiry at scales of centimeters to kilometers and seconds to decades.
  • Article
    Wave-driven inner-shelf motions on the Oregon coast
    (American Meteorological Society, 2009-11) Kirincich, Anthony R. ; Lentz, Steven J. ; Barth, John A.
    Recent work by S. Lentz et al. documents offshore transport in the inner shelf due to a wave-driven return flow associated with the Hasselmann wave stress (the Stokes–Coriolis force). This analysis is extended using observations from the central Oregon coast to identify the wave-driven return flow present and quantify the potential bias of wind-driven across-shelf exchange by unresolved wave-driven circulation. Using acoustic Doppler current profiler (ADCP) measurements at six stations, each in water depths of 13–15 m, observed depth-averaged, across-shelf velocities were generally correlated with theoretical estimates of the proposed return flow. During times of minimal wind forcing, across-shelf velocity profiles were vertically sheared, with stronger velocities near the top of the measured portion of the water column, and increased in magnitude with increasing significant wave height, consistent with circulation due to the Hasselmann wave stress. Yet velocity magnitudes and vertical shears were stronger than that predicted by linear wave theory, and more similar to the stratified “summer” velocity profiles described by S. Lentz et al. Additionally, substantial temporal and spatial variability of the wave-driven return flow was found, potentially due to changing wind and wave conditions as well as local bathymetric variability. Despite the wave-driven circulation found, subtracting estimates of the return flow from the observed across-shelf velocity had no significant effect on estimates of the across-shelf exchange due to along-shelf wind forcing at these water depths along the Oregon coast during summer.
  • Preprint
    Physical and biological variables affecting seabird distributions during the upwelling season of the northern California Current
    ( 2004-08-28) Ainley, David G. ; Spear, Larry B. ; Tynan, Cynthia T. ; Barth, John A. ; Pierce, Stephen D. ; Ford, R. Glenn ; Cowles, Timothy J.
    As a part of the GLOBEC-Northeast Pacific project, we investigated variation in the abundance of marine birds in the context of biological and physical habitat conditions in the northern portion of the California Current System (CCS) during cruises during the upwelling season 2000. Continuous surveys of seabirds were conducted simultaneously in June (onset of upwelling) and August (mature phase of upwelling) with ocean properties quantified using a towed, undulating vehicle and a multi-frequency bioacoustic instrument (38-420 kHz). Twelve species of seabirds contributed 99% of the total community density and biomass. Species composition and densities were similar to those recorded elsewhere in the CCS during earlier studies of the upwelling season. At a scale of 2-4 km, physical and biological oceanographic variables explained an average of 25% of the variation in the distributions and abundance of the 12 species. The most important explanatory variables (among 14 initially included in each multiple regression model) were distance to upwelling-derived frontal features (center and edge of coastal jet, and an abrupt, inshore temperature gradient), sea-surface salinity, acoustic backscatter representing various sizes of prey (smaller seabird species were associated with smaller prey and the reverse for larger seabird species), and chlorophyll concentration. We discuss the importance of these variables in the context of what factors may be that seabirds use to find food. The high seabird density in the Heceta Bank and Cape Blanco areas indicate them to be refuges contrasting the low seabird densities currently found in most other parts of the CCS, following decline during the recent warm regime of the Pacific Decadal Oscillation.
  • Article
    Global perspectives on observing ocean boundary current systems
    (Frontiers Media, 2019-08-08) Todd, Robert E. ; Chavez, Francisco P. ; Clayton, Sophie A. ; Cravatte, Sophie ; Goes, Marlos Pereira ; Graco, Michelle ; Lin, Xiaopei ; Sprintall, Janet ; Zilberman, Nathalie ; Archer, Matthew ; Arístegui, Javier ; Balmaseda, Magdalena A. ; Bane, John M. ; Baringer, Molly O. ; Barth, John A. ; Beal, Lisa M. ; Brandt, Peter ; Calil, Paulo H. R. ; Campos, Edmo ; Centurioni, Luca R. ; Chidichimo, Maria Paz ; Cirano, Mauro ; Cronin, Meghan F. ; Curchitser, Enrique N. ; Davis, Russ E. ; Dengler, Marcus ; deYoung, Brad ; Dong, Shenfu ; Escribano, Ruben ; Fassbender, Andrea ; Fawcett, Sarah E. ; Feng, Ming ; Goni, Gustavo J. ; Gray, Alison R. ; Gutiérrez, Dimitri ; Hebert, Dave ; Hummels, Rebecca ; Ito, Shin-ichi ; Krug, Marjolaine ; Lacan, Francois ; Laurindo, Lucas ; Lazar, Alban ; Lee, Craig M. ; Lengaigne, Matthieu ; Levine, Naomi M. ; Middleton, John ; Montes, Ivonne ; Muglia, Michael ; Nagai, Takeyoshi ; Palevsky, Hilary I. ; Palter, Jaime B. ; Phillips, Helen E. ; Piola, Alberto R. ; Plueddemann, Albert J. ; Qiu, Bo ; Rodrigues, Regina ; Roughan, Moninya ; Rudnick, Daniel L. ; Rykaczewski, Ryan R. ; Saraceno, Martin ; Seim, Harvey E. ; Sen Gupta, Alexander ; Shannon, Lynne ; Sloyan, Bernadette M. ; Sutton, Adrienne J. ; Thompson, LuAnne ; van der Plas, Anja K. ; Volkov, Denis L. ; Wilkin, John L. ; Zhang, Dongxiao ; Zhang, Linlin
    Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
  • Article
    OceanGliders: A component of the integrated GOOS
    (Frontiers Media, 2019-10-02) Testor, Pierre ; de Young, Brad ; Rudnick, Daniel L. ; Glenn, Scott ; Hayes, Daniel J. ; Lee, Craig M. ; Pattiaratchi, Charitha ; Hill, Katherine Louise ; Heslop, Emma ; Turpin, Victor ; Alenius, Pekka ; Barrera, Carlos ; Barth, John A. ; Beaird, Nicholas ; Bécu, Guislain ; Bosse, Anthony ; Bourrin, François ; Brearley, J. Alexander ; Chao, Yi ; Chen, Sue ; Chiggiato, Jacopo ; Coppola, Laurent ; Crout, Richard ; Cummings, James A. ; Curry, Beth ; Curry, Ruth G. ; Davis, Richard F. ; Desai, Kruti ; DiMarco, Steven F. ; Edwards, Catherine ; Fielding, Sophie ; Fer, Ilker ; Frajka-Williams, Eleanor ; Gildor, Hezi ; Goni, Gustavo J. ; Gutierrez, Dimitri ; Haugan, Peter M. ; Hebert, David ; Heiderich, Joleen ; Henson, Stephanie A. ; Heywood, Karen J. ; Hogan, Patrick ; Houpert, Loïc ; Huh, Sik ; Inall, Mark E. ; Ishii, Masao ; Ito, Shin-ichi ; Itoh, Sachihiko ; Jan, Sen ; Kaiser, Jan ; Karstensen, Johannes ; Kirkpatrick, Barbara ; Klymak, Jody M. ; Kohut, Josh ; Krahmann, Gerd ; Krug, Marjolaine ; McClatchie, Sam ; Marin, Frédéric ; Mauri, Elena ; Mehra, Avichal ; Meredith, Michael P. ; Meunier, Thomas ; Miles, Travis ; Morell, Julio M. ; Mortier, Laurent ; Nicholson, Sarah ; O'Callaghan, Joanne ; O'Conchubhair, Diarmuid ; Oke, Peter ; Pallás-Sanz, Enric ; Palmer, Matthew D. ; Park, Jong Jin ; Perivoliotis, Leonidas ; Poulain, Pierre Marie ; Perry, Ruth ; Queste, Bastien ; Rainville, Luc ; Rehm, Eric ; Roughan, Moninya ; Rome, Nicholas ; Ross, Tetjana ; Ruiz, Simon ; Saba, Grace ; Schaeffer, Amandine ; Schönau, Martha ; Schroeder, Katrin ; Shimizu, Yugo ; Sloyan, Bernadette M. ; Smeed, David A. ; Snowden, Derrick ; Song, Yumi ; Swart, Sebastiaan ; Tenreiro, Miguel ; Thompson, Andrew ; Tintore, Joaquin ; Todd, Robert E. ; Toro, Cesar ; Venables, Hugh J. ; Wagawa, Taku ; Waterman, Stephanie N. ; Watlington, Roy A. ; Wilson, Doug
    The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.