Silvia
Matthew
Silvia
Matthew
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleSurviving in ocean worlds: experimental characterization of fiber optic tethers across Europa-like ice faults and unraveling the sliding behavior of ice(IOP Publishing, 2023-01-09) Singh, Vishaal ; McCarthy, Christine ; Silvia, Matthew ; Jakuba, Michael V. ; Craft, Kathleen L. ; Rhoden, Alyssa R. ; German, Chris ; Koczynski, Theodore A.As an initial step toward in situ exploration of the interiors of Ocean Worlds to search for life using cryobot architectures, we test how various communication tethers behave under potential Europa-like stress conditions. By freezing two types of pretensioned insulated fiber optic cables inside ice blocks, we simulate tethers being refrozen in a probe’s wake as it traverses through an Ocean World’s ice shell. Using a cryogenic biaxial apparatus, we simulate shear motion on preexisting faults at various velocities and temperatures. These shear tests are used to evaluate the mechanical behavior of ice, characterize the behavior of communication tethers, and explore their limitations for deployment by a melt probe. We determine (a) the maximum shear stress tethers can sustain from an ice fault, prior to failure (viable/unviable regimes for deployment), and (b) optical tether performance for communications. We find that these tethers are fairly robust across a range of temperature and velocity conditions expected on Europa ( T = 95–260 K, velocity = 5 × 10 −7 m s −1 to 3 × 10 −4 m s −1 ). However, damage to the outer jackets of the tethers and stretching of inner fibers at the coldest temperatures tested both indicate a need for further tether prototype development. Overall, these studies constrain the behavior of optical tethers for use at Ocean Worlds, improve the ability to probe thermomechanical properties of dynamic ice shells likely to be encountered by landed missions, and guide future technology development for accessing the interiors of (potentially habitable ± inhabited) Ocean Worlds.
-
ArticleImpacts of hydrostatic pressure on distributed temperature-sensing optical fibers for extreme ocean and ice environments(MDPI, 2024-07-02) Tyler, Scott W. ; Silvia, Matthew E. ; Jakuba, Michael V. ; Durante, Brian M. ; Winebrenner, Dale P.Optical fiber is increasingly used for both communication and distributed sensing of temperature and strain in environmental studies. In this work, we demonstrate the viability of unreinforced fiber tethers (bare fiber) for Raman-based distributed temperature sensing in deep ocean and deep ice environments. High-pressure testing of single-mode and multimode optical fiber showed little to no changes in light attenuation over pressures from atmospheric to 600 bars. Most importantly, the differential attenuation between Stokes and anti-Stokes frequencies, critical for the evaluation of distributed temperature sensing, was shown to be insignificantly affected by fluid pressures over the range of pressures tested for single-mode fiber, and only very slightly affected in multimode fiber. For multimode fiber deployments to ocean depths as great as 6000 m, the effect of pressure-dependent differential attenuation was shown to impact the estimated temperatures by only 0.15 °K. These new results indicate that bare fiber tethers, in addition to use for communication, can be used for distributed temperature or strain in fibers subjected to large depth (pressure) in varying environments such as deep oceans, glaciers and potentially the icy moons of Saturn and Jupiter.