Hornbach Matthew J.

No Thumbnail Available
Last Name
Hornbach
First Name
Matthew J.
ORCID
0000-0002-0202-2508

Search Results

Now showing 1 - 4 of 4
  • Article
    Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data
    (American Geophysical Union, 2004-10-21) Shillington, Donna J. ; Van Avendonk, Harm J. A. ; Holbrook, W. Steven ; Kelemen, Peter B. ; Hornbach, Matthew J.
    New results from wide-angle seismic data collected parallel to the central Aleutian island arc require an intermediate to mafic composition for the middle crust and a mafic to ultramafic composition for the lower crust and yield lateral velocity variations that correspond to arc segmentation and trends in major element geochemistry. The 3-D ray tracing/2.5-D inversion of this sparse wide-angle data set, which incorporates independent phase interpretations and new constraints on shallow velocity structure, produces a faster and smoother result than a previously published velocity model. Middle-crustal velocities of 6.5–7.3 km/s over depths of ∼10–20 km indicate an andesitic to basaltic composition. High lower-crustal velocities of 7.3–7.7 km/s over depths of ∼20–35 km are interpreted as ultramafic-mafic cumulates and/or garnet granulites. The total crustal thickness is 35–37 km. This result indicates that the Aleutian island arc has higher velocities, and thus more mafic compositions, than average continental crust, implying that significant modifications would be required for this arc to be a suitable building block for continental crust. Lateral variations in average crustal velocity (below 10 km) roughly correspond to trends in major element geochemistry of primitive (Mg # > 0.6) lavas. The highest lower-crustal velocities (and presumably most mafic material) are detected in the center of an arc segment, between Unmak and Unalaska Islands, implying that arc segmentation exerts control over crustal composition.
  • Article
    The effects of 180 years of aging on the physical and seismic properties of partially saturated sands
    (American Geophysical Union, 2021-05-10) Wright, Vanshan ; Hornbach, Matthew J.
    Constraining how the physical properties and seismic responses of recently deposited sands change with time is important for understanding earthquake site response, subsurface fluid flow, and early stages of lithification. Currently, however, there is no detailed (cm-scale) assessment of how sand's physical properties and associated seismic velocities evolve over the first two centuries after deposition. Here, we integrate sedimentation rates with seismic velocity and sediment physical properties data to assess how the vadose zone sands at Port Royal Beach, Jamaica, change within 180 years after deposition. We show that compressional and shear wave velocities increase with sediment age, whereas porosity, grain size, sorting, mineralogy, and cementation fraction remain relatively unchanged during the same period. Rock physics models (constrained by the measured physical properties) predict constant seismic velocities at all sites regardless of sediment age, though misfits between modeled and observed velocities increase with sediment age. We explain these misfits by proposing that shallow sands undergo microstructural grain reorganization that leads to a more uniform distribution of grain contact forces with time. Our results imply that beach sands undergo a previously undocumented lithification process that occurs before compaction.
  • Article
    Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U.S. Atlantic margin
    (American Geophysical Union, 2007-12-28) Hornbach, Matthew J. ; Lavier, Luc L. ; Ruppel, Carolyn D.
    Analysis of new multibeam bathymetry data and seismic Chirp data acquired over the Cape Fear Slide complex on the U.S. Atlantic margin suggests that at least 5 major submarine slides have likely occurred there within the past 30,000 years, indicating that repetitive, large-scale mass wasting and associated tsunamis may be more common in this area than previously believed. Gas hydrate deposits and associated free gas as well as salt tectonics have been implicated in previous studies as triggers for the major Cape Fear slide events. Analysis of the interaction of the gas hydrate phase boundary and the various generations of slides indicates that only the most landward slide likely intersected the phase boundary and inferred high gas pressures below it. For much of the region, we believe that displacement along a newly recognized normal fault led to upward migration of salt, oversteepening of slopes, and repeated slope failures. Using new constraints on slide morphology, we develop the first tsunami model for the Cape Fear Slide complex. Our results indicate that if the most seaward Cape Fear slide event occurred today, it could produce waves in excess of 2 m at the present-day 100 m bathymetric contour.
  • Article
    Widespread gas hydrate instability on the upper U.S. Beaufort margin
    (John Wiley & Sons, 2014-12-09) Phrampus, Benjamin J. ; Hornbach, Matthew J. ; Ruppel, Carolyn D. ; Hart, Patrick E.
    The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5–7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.