Grupe Benjamin

No Thumbnail Available
Last Name
Grupe
First Name
Benjamin
ORCID
0000-0002-5421-7278

Search Results

Now showing 1 - 2 of 2
  • Article
    Major impacts of climate change on deep-sea benthic ecosystems
    (University of California Press, 2017-02-23) Sweetman, Andrew K. ; Thurber, Andrew R. ; Smith, Craig R. ; Levin, Lisa A. ; Mora, Camilo ; Wei, Chih-Lin ; Gooday, Andrew J. ; Jones, Daniel O. B. ; Rex, Michael ; Yasuhara, Moriaki ; Ingels, Jeroen ; Ruhl, Henry A. ; Frieder, Christina A. ; Danovaro, Roberto ; Würzberg, Laura ; Baco, Amy R. ; Grupe, Benjamin ; Pasulka, Alexis ; Meyer, Kirstin S. ; Dunlop, Katherine Mary ; Henry, Lea-Anne ; Roberts, J. Murray
    The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m) ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications. 
  • Article
    Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework
    (Frontiers Media, 2018-02-21) Mullineaux, Lauren S. ; Metaxas, Anna ; Beaulieu, Stace E. ; Bright, Monika ; Gollner, Sabine ; Grupe, Benjamin ; Herrera, Santiago ; Kellner, Julie B. ; Levin, Lisa A. ; Mitarai, Satoshi ; Neubert, Michael G. ; Thurnherr, Andreas M. ; Tunnicliffe, Verena ; Watanabe, Hiromi K. ; Won, Yong-Jin
    Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: (1) what is the influence of the magnitude and rate of disturbance on ecological attributes, such as time to extinction or resilience in a metacommunity; (2) what interactions between local and regional processes control species diversity, and (3) which communities are “hot spots” of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining). Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific or mid Atlantic where disturbance rates are different and information on local controls is missing.