Lund Björn

No Thumbnail Available
Last Name
Lund
First Name
Björn
ORCID
0000-0002-9440-3825

Search Results

Now showing 1 - 2 of 2
  • Article
    Overview of the Arctic Sea state and boundary layer physics program
    (American Geophysical Union, 2018-04-16) Thomson, Jim ; Ackley, Stephen ; Girard-Ardhuin, Fanny ; Ardhuin, Fabrice ; Babanin, Alexander ; Boutin, Guillaume ; Brozena, John ; Cheng, Sukun ; Collins, Clarence ; Doble, Martin ; Fairall, Christopher W. ; Guest, Peter ; Gebhardt, Claus ; Gemmrich, Johannes ; Graber, Hans C. ; Holt, Benjamin ; Lehner, Susanne ; Lund, Björn ; Meylan, Michael ; Maksym, Ted ; Montiel, Fabien ; Perrie, Will ; Persson, Ola ; Rainville, Luc ; Rogers, W. Erick ; Shen, Hui ; Shen, Hayley ; Squire, Vernon ; Stammerjohn, Sharon E. ; Stopa, Justin ; Smith, Madison M. ; Sutherland, Peter ; Wadhams, Peter
    A large collaborative program has studied the coupled air‐ice‐ocean‐wave processes occurring in the Arctic during the autumn ice advance. The program included a field campaign in the western Arctic during the autumn of 2015, with in situ data collection and both aerial and satellite remote sensing. Many of the analyses have focused on using and improving forecast models. Summarizing and synthesizing the results from a series of separate papers, the overall view is of an Arctic shifting to a more seasonal system. The dramatic increase in open water extent and duration in the autumn means that large surface waves and significant surface heat fluxes are now common. When refreezing finally does occur, it is a highly variable process in space and time. Wind and wave events drive episodic advances and retreats of the ice edge, with associated variations in sea ice formation types (e.g., pancakes, nilas). This variability becomes imprinted on the winter ice cover, which in turn affects the melt season the following year.
  • Article
    A warm jet in a cold ocean
    (Nature Research, 2021-04-23) MacKinnon, Jennifer A. ; Simmons, Harper L. ; Hargrove, John ; Thomson, Jim ; Peacock, Thomas ; Alford, Matthew H. ; Barton, Benjamin I. ; Boury, Samuel ; Brenner, Samuel D. ; Couto, Nicole ; Danielson, Seth L. ; Fine, Elizabeth C. ; Graber, Hans C. ; Guthrie, John D. ; Hopkins, Joanne E. ; Jayne, Steven R. ; Jeon, Chanhyung ; Klenz, Thilo ; Lee, Craig M. ; Lenn, Yueng-Djern ; Lucas, Andrew J. ; Lund, Björn ; Mahaffey, Claire ; Norman, Louisa ; Rainville, Luc ; Smith, Madison M. ; Thomas, Leif N. ; Torres-Valdes, Sinhue ; Wood, Kevin R.
    Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.