Nagashima
Ryosuke
Nagashima
Ryosuke
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleSingle nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II.(Rockefeller University Press, 2019-03-01) Nagashima, Ryosuke ; Hibino, Kayo ; Ashwin, S. S. ; Babokhov, Michael ; Fujishiro, Shin ; Imai, Ryosuke ; Nozaki, Tadasu ; Tamura, Sachiko ; Tani, Tomomi ; Kimura, Hiroshi ; Shribak, Michael ; Kanemaki, Masato T. ; Sasai, Masaki ; Maeshima, KazuhiroAlthough chromatin organization and dynamics play a critical role in gene transcription, how they interplay remains unclear. To approach this issue, we investigated genome-wide chromatin behavior under various transcriptional conditions in living human cells using single-nucleosome imaging. While transcription by RNA polymerase II (RNAPII) is generally thought to need more open and dynamic chromatin, surprisingly, we found that active RNAPII globally constrains chromatin movements. RNAPII inhibition or its rapid depletion released the chromatin constraints and increased chromatin dynamics. Perturbation experiments of P-TEFb clusters, which are associated with active RNAPII, had similar results. Furthermore, chromatin mobility also increased in resting G0 cells and UV-irradiated cells, which are transcriptionally less active. Our results demonstrated that chromatin is globally stabilized by loose connections through active RNAPII, which is compatible with models of classical transcription factories or liquid droplet formation of transcription-related factors. Together with our computational modeling, we propose the existence of loose chromatin domain networks for various intra-/interchromosomal contacts via active RNAPII clusters/droplets.
-
PreprintDynamic organization of chromatin domains revealed by super-resolution live-dell imaging( 2017-06) Nozaki, Tadasu ; Imai, Ryosuke ; Tanbo, Mai ; Nagashima, Ryosuke ; Tamura, Sachiko ; Tani, Tomomi ; Joti, Yasumasa ; Tomita, Masaru ; Hibino, Kayo ; Kanemaki, Masato T. ; Wendt, Kerstin S.The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated localization microscopy, PALM) and single nucleosome tracking, we developed a nuclear imaging system to visualize the higher-order structures along with their dynamics in live mammalian cells. We demonstrated that nucleosomes form compact domains with a peak diameter of ~160 nm and move coherently in live cells. The heterochromatin-rich regions showed more domains and less movement. With cell differentiation, the domains became more apparent, with reduced dynamics. Furthermore, various perturbation experiments indicated that they are organized by a combination of factors, including cohesin and nucleosome–nucleosome interactions. Notably, we observed the domains during mitosis, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle.