Savidge Dana

No Thumbnail Available
Last Name
Savidge
First Name
Dana
ORCID
0000-0002-8466-0318

Search Results

Now showing 1 - 3 of 3
  • Article
    Overview of the Processes driving Exchange At Cape Hatteras Program
    (Oceanography Society, 2022-05-12) Seim, Harvey E. ; Savidge, Dana ; Andres, Magdalena ; Bane, John M. ; Edwards, Catherine ; Gawarkiewicz, Glen G. ; He, Ruoying ; Todd, Robert E. ; Muglia, Michael ; Zambon, Joseph B. ; Han, Lu ; Mao, Shun
    The Processes driving Exchange At Cape Hatteras (PEACH) program seeks to better understand seawater exchanges between the continental shelf and the open ocean near Cape Hatteras, North Carolina. This location is where the Gulf Stream transitions from a boundary-trapped current to a free jet, and where robust along-shelf convergence brings cool, relatively fresh Middle Atlantic Bight and warm, salty South Atlantic Bight shelf waters together, forming an important and dynamic biogeographic boundary. The magnitude of this convergence implies large export of shelf water to the open ocean here. Background on the oceanography of the region provides motivation for the study and gives context for the measurements that were made. Science questions focus on the roles that wind forcing, Gulf Stream forcing, and lateral density gradients play in driving exchange. PEACH observational efforts include a variety of fixed and mobile observing platforms, and PEACH modeling included two different resolutions and data assimilation schemes. Findings to date on mean circulation, the nature of export from the southern Middle Atlantic Bight shelf, Gulf Stream variability, and position variability of the Hatteras Front are summarized, together with a look ahead to forthcoming analyses.
  • Article
    Ocean circulation near Cape Hatteras: observations of mean and variability
    (American Geophysical Union, 2022-11-19) Han, Lu ; Seim, Harvey ; Bane, John ; Savidge, Dana ; Andres, Magdalena ; Gawarkiewicz, Glen ; Muglia, Mike
    The convergence of different water masses on the shelf and along the shelfbreak, and cross‐isobath shelf‐open ocean exchanges contribute to the complex circulation near Cape Hatteras. We examine the mean and variability of these circulations using data from nine bottom‐mounted acoustic Doppler current profilers, deployed over the mid‐ to outer‐continental shelf north and south of Cape Hatteras as part of the Processes driving Exchange At Cape Hatteras program. The 18‐month‐mean depth‐averaged shelf flows are mostly aligned with isobaths and oriented toward Cape Hatteras. At two sites just north of Cape Hatteras, mean flows have a strong cross‐shelf component. Two dominant spatial patterns in the velocity field are obtained from an empirical orthogonal function analysis. The two leading modes contain 61% of the total variance. The spatial variation of Mode 1 exhibits an along‐shelf flow pattern, while that of Mode 2 shows a convergent flow pattern. The principal component (PC) series of Mode 1 is significantly correlated with the local wind stress, confirming that the along‐shelf flow is wind‐driven as expected. The PC of Mode 2 is highly correlated with the Gulf Stream lateral position as inferred from the current‐ and pressure‐sensor‐equipped inverted echo sounders over the slope south of Cape Hatteras, which indicates that Gulf Stream movement drives time‐varying shelf flow convergence. Conditionally averaged sea‐surface temperature and high‐frequency radar‐measured surface currents based on PC1 and PC2 confirm these relationships and further illustrate how the wind and Gulf Stream forcing work together to influence the flow regime in this region.
  • Article
    Observations of Shelf-Ocean Exchange in the Northern South Atlantic Bight Driven by the Gulf Stream
    (American Geophysical Union, 2023-07-07) Andres, Magdalena ; Muglia, Michael ; Seim, Harvey E. ; Bane, John M. ; Savidge, Dana
    Between Florida and Cape Hatteras, North Carolina, the Gulf Stream carries warm, salty waters poleward along the continental slope. This strong current abuts the edge of the South Atlantic Bight (SAB) continental shelf and is thought to influence exchange of waters between the open ocean and the shelf. Observations from a pair of instruments deployed for 19 months in the northern SAB are used here to examine the processes by which the Gulf Stream can impact this exchange. The instrument deployed on the SAB shelf edge shows that the time-averaged along-slope flow is surface-intensified with only few flow reversals at low frequencies (>40-day period). Time-averaged cross-slope flow is onto the SAB shelf in a lower layer and off-shelf above. Consistent with Ekman dynamics, the magnitude of lower-layer on-shelf flow is correlated with the along-slope velocity, which is in turn controlled by the position and/or transport of the Gulf Stream that flows poleward along the SAB continental slope. In the frequency band associated with downstream-propagating wave-like meanders of the Gulf Stream jet (2-15 day period), currents at the shelf-edge are characterized by surface-intensified flow in the along- and cross-slope directions. Estimates of maximum upwelling velocities associated with cyclonic frontal eddies between meander crests occasionally reach 100 m/day.