Jian Zhimin

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 3 of 3
  • Article
    The role of magmatism in the thinning and breakup of the South China Sea continental margin: Special Topic: the South China Sea Ocean Drilling
    (Oxford University Press, 2019-08-13) Sun, Zhen ; Lin, Jian ; Qiu, Ning ; Jian, Zhimin ; Wang, PinXian ; Pang, Xiong ; Zheng, Jinyun ; Zhu, Benduo
    Magmatism plays a key role in the process of continental margin breakup and ocean formation. Even in the extremely magma-poor Iberia and Newfoundland margin, studies of field outcrops have shown that syn-rift magmatism had participated in rifting from a very early stage and contributed directly to the rifting process. The final transition from exhumed continental mantle to the ocean formation is also triggered by the accumulation and eruption of magma [1]. Therefore, Atlantic-type passive continental margins are classified into two end-members: magma-poor (non-volcanic) and magma-rich (volcanic). The differences between them lie in whether a large amount of intrusive and extrusive magmatism from the mantle plume/hotspot is involved in the syn-rift and breakup stages. A magma-rich margin [2] should include the following characteristics: (i) a high-velocity lower crust (HVLC) caused by syn-rift mafic magma underplating; (ii) continental crust intruded by abundant sills and dikes; (iii) a large volume of seaward-dipping reflectors (SDRs) caused by flood basalt eruption or tuffs. All other margins are classified as magma-poor margins.
  • Article
    Middle miocene intensification of South Asian monsoonal rainfall
    (American Geophysical Union, 2020-11-27) Yang, Xueping ; Groeneveld, Jeroen ; Jian, Zhimin ; Steinke, Stephan ; Giosan, Liviu
    During the middle Miocene, Earth's climate changed from a global warm period (Miocene Climatic Optimum) into a colder one with the expansion of the Antarctic ice sheet. This prominent climate transition was also a period of drastic changes in global atmospheric circulation. The development of the South Asian monsoon is not well understood and mainly derived from proxy records of wind strength. Data for middle Miocene changes in rainfall are virtually non‐existent for India and the Arabian Sea prior to 11 Ma. This study presents planktic foraminiferal trace element (Mg/Ca and Ba/Ca) and stable oxygen isotope records from NGHP‐01 Site 01A off the coast of West India in the Eastern Arabian Sea (EAS) to reconstruct the regional surface hydrography and hydroclimate in the South Asian monsoon (SAM) region during the middle Miocene. The Ba/Ca and local seawater δ18O (δ18Osw) changes reveal a notable gradual increase in SAM rainfall intensity during the middle Miocene. Additionally to this long‐term increase in precipitation, the seawater δ18O is punctuated by a prominent decrease, i.e. freshening, at ~14 Ma contemporary with Antarctic glaciation. This suggests that Southern Ocean Intermediate Waters (SOIW) transmitted Antarctic salinity changes into the Arabian Sea via an “oceanic tunnel” mechanism. The middle Miocene increase in SAM rainfall is consistent with climate model simulations of an overall strengthening Asian monsoon from the Eocene to the middle/late Miocene with a further acceleration after the middle Miocene climate transition.
  • Article
    The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting
    (Oxford University Press, 2019-09-12) Wang, Pinxian ; Huang, Chi-Yue ; Lin, Jian ; Jian, Zhimin ; Sun, Zhen ; Zhao, Minghui
    The South China Sea, as ‘a non-volcanic passive margin basin’ in the Pacific, has often been considered as a small-scale analogue of the Atlantic. The recent ocean drilling in the northern South China Sea margin found, however, that the Iberian model of non-volcanic rifted margin from the Atlantic does not apply to the South China Sea. In this paper, we review a variety of rifted basins and propose to discriminate two types of rifting basins: plate-edge type such as the South China Sea and intra-plate type like the Atlantic. They not only differ from each other in structure, formation process, lifespan and geographic size, but also occur at different stages of the Wilson cycle. The intra-plate rifting occurred in the Mesozoic and gave rise to large oceans, whereas the plate-edge rifting took place mainly in the mid-Cenozoic, with three-quarters of the basins concentrated in the Western Pacific. As a member of the Western Pacific system of marginal seas, the South China Sea should be studied not in isolation on its origin and evolution, but in a systematic context to include also its neighboring counterparts.