Vengosh Avner

No Thumbnail Available
Last Name
Vengosh
First Name
Avner
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities
    ( 2015-08) Drollette, Brian D. ; Hoelzer, Kathrin ; Warner, Nathaniel R. ; Darrah, Thomas H. ; Karatum, Osman ; O’Connor, Megan P. ; Nelson, Robert K. ; Fernandez, Loretta A. ; Reddy, Christopher M. ; Vengosh, Avner ; Jackson, Robert B. ; Elsner, Martin ; Plata, Desiree L.
    Hundreds of organic chemicals are utilized during natural gas extraction via high volume hydraulic fracturing (HVHF). However, it is unclear if these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and impact local water quality, either from deep underground injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency’s maximum contaminant levels, and low levels of both gasoline range (GRO; 0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl)phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with 1) inorganic chemical fingerprinting of deep saline groundwater, 2) characteristic noble gas isotopes, and 3) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety (EHS) violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and a one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.
  • Article
    Occurrence and sources of radium in groundwater associated with oil fields in the southern San Joaquin Valley, California
    (American Chemical Society, 2019-08-07) McMahon, Peter B. ; Vengosh, Avner ; Davis, Tracy A. ; Landon, Matthew K. ; Tyne, Rebecca L. ; Wright, Michael T. ; Kulongoski, Justin T. ; Hunt, Andrew G. ; Barry, Peter H. ; Kondash, Andrew J. ; Wang, Zhen ; Ballentine, Christopher J.
    Geochemical data from 40 water wells were used to examine the occurrence and sources of radium (Ra) in groundwater associated with three oil fields in California (Fruitvale, Lost Hills, South Belridge). 226Ra+228Ra activities (range = 0.010–0.51 Bq/L) exceeded the 0.185 Bq/L drinking-water standard in 18% of the wells (not drinking-water wells). Radium activities were correlated with TDS concentrations (p < 0.001, ρ = 0.90, range = 145–15,900 mg/L), Mn + Fe concentrations (p < 0.001, ρ = 0.82, range = <0.005–18.5 mg/L), and pH (p < 0.001, ρ = −0.67, range = 6.2–9.2), indicating Ra in groundwater was influenced by salinity, redox, and pH. Ra-rich groundwater was mixed with up to 45% oil-field water at some locations, primarily infiltrating through unlined disposal ponds, based on Cl, Li, noble-gas, and other data. Yet 228Ra/226Ra ratios in pond-impacted groundwater (median = 3.1) differed from those in oil-field water (median = 0.51). PHREEQC mixing calculations and spatial geochemical variations suggest that the Ra in the oil-field water was removed by coprecipitation with secondary barite and adsorption on Mn–Fe precipitates in the near-pond environment. The saline, organic-rich oil-field water subsequently mobilized Ra from downgradient aquifer sediments via Ra-desorption and Mn/Fe-reduction processes. This study demonstrates that infiltration of oil-field water may leach Ra into groundwater by changing salinity and redox conditions in the subsurface rather than by mixing with a high-Ra source.