Stevenson Samantha

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 3 of 3
  • Article
    Climate variability, volcanic forcing, and last millennium hydroclimate extremes
    (American Meteorological Society, 2018-05-03) Stevenson, Samantha ; Overpeck, Jonathan T. ; Fasullo, John T. ; Coats, Sloan ; Parsons, Luke A. ; Otto-Bliesner, Bette ; Ault, Toby ; Loope, Garrison ; Cole, Julia
    Multidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.
  • Article
    Paleoclimate constraints on the spatiotemporal character of past and future droughts
    (American Meteorological Society, 2020-10-15) Coats, Sloan ; Smerdon, Jason E. ; Stevenson, Samantha ; Fasullo, John T. ; Otto-Bliesner, Bette ; Ault, Toby
    Machine-learning-based methods that identify drought in three-dimensional space–time are applied to climate model simulations and tree-ring-based reconstructions of hydroclimate over the Northern Hemisphere extratropics for the past 1000 years, as well as twenty-first-century projections. Analyzing reconstructed and simulated drought in this context provides a paleoclimate constraint on the spatiotemporal characteristics of simulated droughts. Climate models project that there will be large increases in the persistence and severity of droughts over the coming century, but with little change in their spatial extent. Nevertheless, climate models exhibit biases in the spatiotemporal characteristics of persistent and severe droughts over parts of the Northern Hemisphere. We use the paleoclimate record and results from a linear inverse modeling-based framework to conclude that climate models underestimate the range of potential future hydroclimate states. Complicating this picture, however, are divergent changes in the characteristics of persistent and severe droughts when quantified using different hydroclimate metrics. Collectively our results imply that these divergent responses and the aforementioned biases must be better understood if we are to increase confidence in future hydroclimate projections. Importantly, the novel framework presented herein can be applied to other climate features to robustly describe their spatiotemporal characteristics and provide constraints on future changes to those characteristics.
  • Article
    Mean biases, variability, and trends in air–sea fluxes and sea surface temperature in the CCSM4
    (American Meteorological Society, 2012-11-15) Bates, Susan C. ; Fox-Kemper, Baylor ; Jayne, Steven R. ; Large, William G. ; Stevenson, Samantha ; Yeager, Stephen G.
    Air–sea fluxes from the Community Climate System Model version 4 (CCSM4) are compared with the Coordinated Ocean-Ice Reference Experiment (CORE) dataset to assess present-day mean biases, variability errors, and late twentieth-century trend differences. CCSM4 is improved over the previous version, CCSM3, in both air–sea heat and freshwater fluxes in some regions; however, a large increase in net shortwave radiation into the ocean may contribute to an enhanced hydrological cycle. The authors provide a new baseline for assessment of flux variance at annual and interannual frequency bands in future model versions and contribute a new metric for assessing the coupling between the atmospheric and oceanic planetary boundary layer (PBL) schemes of any climate model. Maps of the ratio of CCSM4 variance to CORE reveal that variance on annual time scales has larger error than on interannual time scales and that different processes cause errors in mean, annual, and interannual frequency bands. Air temperature and specific humidity in the CCSM4 atmospheric boundary layer (ABL) follow the sea surface conditions much more closely than is found in CORE. Sensible and latent heat fluxes are less of a negative feedback to sea surface temperature warming in the CCSM4 than in the CORE data with the model’s PBL allowing for more heating of the ocean’s surface.