Carnat Gauthier

No Thumbnail Available
Last Name
Carnat
First Name
Gauthier
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Physical and biological properties of early winter Antarctic sea ice in the Ross Sea.
    (Cambridge University Press, 2020-06-24) Tison, Jean-Louis ; Maksym, Ted ; Fraser, Alexander D. ; Corkill, Matthew ; Kimura, Noriaki ; Nosaka, Yuichi ; Nomura, Daiki ; Vancoppenolle, Martin ; Ackley, Stephen ; Stammerjohn, Sharon E. ; Wauthy, Sarah ; Van der Linden, Fanny ; Carnat, Gauthier ; Sapart, Célia ; de Jong, Jeroen ; Fripiat, Francois ; Delille, Bruno
    This work presents the results of physical and biological investigations at 27 biogeochemical stations of early winter sea ice in the Ross Sea during the 2017 PIPERS cruise. Only two similar cruises occurred in the past, in 1995 and 1998. The year 2017 was a specific year, in that ice growth in the Central Ross Sea was considerably delayed, compared to previous years. These conditions resulted in lower ice thicknesses and Chl-a burdens, as compared to those observed during the previous cruises. It also resulted in a different structure of the sympagic algal community, unusually dominated by Phaeocystis rather than diatoms. Compared to autumn-winter sea ice in the Weddell Sea (AWECS cruise), the 2017 Ross Sea pack ice displayed similar thickness distribution, but much lower snow cover and therefore nearly no flooding conditions. It is shown that contrasted dynamics of autumnal-winter sea-ice growth between the Weddell Sea and the Ross Sea impacted the development of the sympagic community. Mean/median ice Chl-a concentrations were 3–5 times lower at PIPERS, and the community status there appeared to be more mature (decaying?), based on Phaeopigments/Chl-a ratios. These contrasts are discussed in the light of temporal and spatial differences between the two cruises.
  • Article
    Inorganic carbon system dynamics in landfast Arctic sea ice during the early-melt period
    (John Wiley & Sons, 2015-05-19) Brown, Kristina A. ; Miller, Lisa A. ; Mundy, Christopher J. ; Papakyriakou, Tim ; Francois, Roger ; Gosselin, Michel ; Carnat, Gauthier ; Swystun, Kyle ; Tortell, Philippe D.
    We present the results of a 6 week time series of carbonate system and stable isotope measurements investigating the effects of sea ice on air-sea CO2 exchange during the early melt period in the Canadian Arctic Archipelago. Our observations revealed significant changes in sea ice and sackhole brine carbonate system parameters that were associated with increasing temperatures and the buildup of chlorophyll a in bottom ice. The warming sea-ice column could be separated into distinct geochemical zones where biotic and abiotic processes exerted different influences on inorganic carbon and pCO2 distributions. In the bottom ice, biological carbon uptake maintained undersaturated pCO2 conditions throughout the time series, while pCO2 was supersaturated in the upper ice. Low CO2 permeability of the sea ice matrix and snow cover effectively impeded CO2 efflux to the atmosphere, despite a strong pCO2 gradient. Throughout the middle of the ice column, brine pCO2 decreased significantly with time and was tightly controlled by solubility, as sea ice temperature and in situ melt dilution increased. Once the influence of melt dilution was accounted for, both CaCO3 dissolution and seawater mixing were found to contribute alkalinity and dissolved inorganic carbon to brines, with the CaCO3 contribution driving brine pCO2 to values lower than predicted from melt-water dilution alone. This field study reveals a dynamic carbon system within the rapidly warming sea ice, prior to snow melt. We suggest that the early spring period drives the ice column toward pCO2 undersaturation, contributing to a weak atmospheric CO2 sink as the melt period advances.