Richter-Menge Jackie A.

No Thumbnail Available
Last Name
First Name
Jackie A.

Search Results

Now showing 1 - 3 of 3
  • Article
    Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin
    (American Geophysical Union, 2010-10-08) Toole, John M. ; Timmermans, Mary-Louise ; Perovich, Donald K. ; Krishfield, Richard A. ; Proshutinsky, Andrey ; Richter-Menge, Jackie A.
    Variations in the Arctic central Canada Basin mixed layer properties are documented based on a subset of nearly 6500 temperature and salinity profiles acquired by Ice-Tethered Profilers during the period summer 2004 to summer 2009 and analyzed in conjunction with sea ice observations from ice mass balance buoys and atmosphere-ocean heat flux estimates. The July–August mean mixed layer depth based on the Ice-Tethered Profiler data averaged 16 m (an overestimate due to the Ice-Tethered Profiler sampling characteristics and present analysis procedures), while the average winter mixed layer depth was only 24 m, with individual observations rarely exceeding 40 m. Guidance interpreting the observations is provided by a 1-D ocean mixed layer model. The analysis focuses attention on the very strong density stratification at the base of the mixed layer in the Canada Basin that greatly impedes surface layer deepening and thus limits the flux of deep ocean heat to the surface that could influence sea ice growth/decay. The observations additionally suggest that efficient lateral mixed layer restratification processes are active in the Arctic, also impeding mixed layer deepening.
  • Article
    Surface freshening in the Arctic Ocean's Eurasian Basin : an apparent consequence of recent change in the wind-driven circulation
    (American Geophysical Union, 2011-07-23) Timmermans, Mary-Louise ; Proshutinsky, Andrey ; Krishfield, Richard A. ; Perovich, Donald K. ; Richter-Menge, Jackie A. ; Stanton, Timothy P. ; Toole, John M.
    Data collected by an autonomous ice-based observatory that drifted into the Eurasian Basin between April and November 2010 indicate that the upper ocean was appreciably fresher than in 2007 and 2008. Sea ice and snowmelt over the course of the 2010 drift amounted to an input of less than 0.5 m of liquid freshwater to the ocean (comparable to the freshening by melting estimated for those previous years), while the observed change in upper-ocean salinity over the melt period implies a freshwater gain of about 0.7 m. Results of a wind-driven ocean model corroborate the observations of freshening and suggest that unusually fresh surface waters observed in parts of the Eurasian Basin in 2010 may have been due to the spreading of anomalously fresh water previously residing in the Beaufort Gyre. This flux is likely associated with a 2009 shift in the large-scale atmospheric circulation to a significant reduction in strength of the anticyclonic Beaufort Gyre and the Transpolar Drift Stream.
  • Article
    Ice and ocean velocity in the Arctic marginal ice zone : ice roughness and momentum transfer
    (University of California Press, 2017-09-21) Cole, Sylvia T. ; Toole, John M. ; Lele, Ratnaksha ; Timmermans, Mary-Louise ; Gallaher, Shawn G. ; Stanton, Timothy P. ; Shaw, William J. ; Hwang, Byongjun ; Maksym, Ted ; Wilkinson, Jeremy P. ; Ortiz, Macarena ; Graber, Hans C. ; Rainville, Luc ; Petty, Alek A. ; Farrell, Sinéad L. ; Richter-Menge, Jackie A. ; Haas, Christian
    The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations of momentum transfer, and imply that the future Arctic system could become increasingly seasonal.