Bellerby
Richard G. J.
Bellerby
Richard G. J.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleComment on “Modern-age buildup of CO2 and its effects on seawater acidity and salinity” by Hugo A. Loáiciga(American Geophysical Union, 2007-09-25) Caldeira, Ken ; Archer, David ; Barry, James P. ; Bellerby, Richard G. J. ; Brewer, Peter G. ; Cao, Long ; Dickson, Andrew G. ; Doney, Scott C. ; Elderfield, Henry ; Fabry, Victoria J. ; Feely, Richard A. ; Gattuso, Jean-Pierre ; Haugan, Peter M. ; Hoegh-Guldberg, Ove ; Jain, Atul K. ; Kleypas, Joan A. ; Langdon, Chris ; Orr, James C. ; Ridgwell, Andy ; Sabine, Christopher L. ; Seibel, Brad A. ; Shirayama, Yoshihisa ; Turley, Carol ; Watson, Andrew J. ; Zeebe, Richard E.
-
ArticleA decade of incorporating social sciences in the Integrated Marine Biosphere Research Project (IMBeR): much done, much to do?(Frontiers Media, 2021-06-21) van Putten, Ingrid ; Kelly, Rachel ; Cavanagh, Rachel D. ; Murphy, Eugene J. ; Breckwoldt, Annette ; Brodie, Stephanie ; Cvitanovic, Christopher ; Dickey-Collas, Mark ; Maddison, Lisa ; Melbourne-Thomas, Jessica ; Arrizabalaga, Haritz ; Azetsu-Scott, Kumiko ; Beckley, Lynnath E. ; Bellerby, Richard G. J. ; Constable, Andrew ; Cowie, Greg ; Evans, Karen ; Glaser, Marion ; Hall, Julie A. ; Hobday, Alistair J. ; Johnston, Nadine M. ; Llopiz, Joel K. ; Mueter, Franz ; Muller-Karger, Frank E. ; Weng, Kevin ; Wolf-Gladrow, Dieter A. ; Xavier, José C.Successful management and mitigation of marine challenges depends on cooperation and knowledge sharing which often occurs across culturally diverse geographic regions. Global ocean science collaboration is therefore essential for developing global solutions. Building effective global research networks that can enable collaboration also need to ensure inter- and transdisciplinary research approaches to tackle complex marine socio-ecological challenges. To understand the contribution of interdisciplinary global research networks to solving these complex challenges, we use the Integrated Marine Biosphere Research (IMBeR) project as a case study. We investigated the diversity and characteristics of 1,827 scientists from 11 global regions who were attendees at different IMBeR global science engagement opportunities since 2009. We also determined the role of social science engagement in natural science based regional programmes (using key informants) and identified the potential for enhanced collaboration in the future. Event attendees were predominantly from western Europe, North America, and East Asia. But overall, in the global network, there was growing participation by females, students and early career researchers, and social scientists, thus assisting in moving toward interdisciplinarity in IMBeR research. The mainly natural science oriented regional programmes showed mixed success in engaging and collaborating with social scientists. This was mostly attributed to the largely natural science (i.e., biological, physical) goals and agendas of the programmes, and the lack of institutional support and push to initiate connections with social science. Recognising that social science research may not be relevant to all the aims and activities of all regional programmes, all researchers however, recognised the (potential) benefits of interdisciplinarity, which included broadening scientists’ understanding and perspectives, developing connections and interlinkages, and making science more useful. Pathways to achieve progress in regional programmes fell into four groups: specific funding, events to come together, within-programme-reflections, and social science champions. Future research programmes should have a strategic plan to be truly interdisciplinary, engaging natural and social sciences, as well as aiding early career professionals to actively engage in such programmes.
-
ArticleOrganic alkalinity as an important constituent of total alkalinity and the buffering system in river‐to‐coast transition zones(American Geophysical Union, 2023-07-28) Song, Shuzhen ; Bellerby, Richard Garth James ; Wang, Zhaohui Aleck ; Wurgaft, Eyal ; Li, DaojiOrganic acid-base species in the dissolved organic carbon pool have been shown to make an important contribution (i.e., organic alkalinity; OrgAlk) to the total alkalinity (TA) in many coastal systems. This study documents an intensive investigation of OrgAlk characteristics in the river-to-coast transition zones of six southeast Chinese rivers. OrgAlk, mainly originating from river input, accounted for an important proportion of TA (0.3%–12%) in six estuaries. Carboxylic acid groups were commonly present in all estuaries. Notable differences in the TA values (1–18 μmol kg−1) determined by several established TA measurement approaches were identified in estuaries where organic acids with pKa <5.2 were abundant. The most widely used open-cell titration method, in comparison with closed-cell titration and single-step titration, is the best approach to incorporate OrgAlk in titrated TA when the pKa values of organic acids were >5 in the study estuaries. Across our study sites, OrgAlk might modify H+ concentrations by 3%–69% (i.e., pH by 0.01–0.78) and aragonite saturation states by 1%–72%, indicating that OrgAlk can play a significant role in the coastal carbonate buffering system. It is essential to improve current TA measurement approaches to more accurately represent OrgAlk in the coastal system and assess impacts of OrgAlk on coastal carbonate chemistry.