Martin Jennifer L.

No Thumbnail Available
Last Name
Martin
First Name
Jennifer L.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Alexandrium fundyense cysts in the Gulf of Maine : long-term time series of abundance and distribution, and linkages to past and future blooms
    ( 2013-10) Anderson, Donald M. ; Keafer, Bruce A. ; Kleindinst, Judith L. ; McGillicuddy, Dennis J. ; Martin, Jennifer L. ; Norton, Kerry ; Pilskaln, Cynthia H. ; Smith, Juliette L. ; Sherwood, Christopher R. ; Butman, Bradford
    Here we document Alexandrium fundyense cyst abundance and distribution patterns over nine years (1997 and 2004-2011) in the coastal waters of the Gulf of Maine (GOM) and identify linkages between those patterns and several metrics of the severity or magnitude of blooms occurring before and after each autumn cyst survey. We also explore the relative utility of two measures of cyst abundance and demonstrate that GOM cyst counts can be normalized to sediment volume, revealing meaningful patterns equivalent to those determined with dry weight normalization.Cyst concentrations were highly variable spatially. Two distinct 1 seedbeds (defined here as accumulation zones with > 300 cysts cm-3) are evident, one in the Bay of Fundy (BOF) and one in mid-coast Maine. Overall, seedbed locations remained relatively constant through time, but their area varied 3-4 fold, and total cyst abundance more than 10 fold among years. A major expansion of the mid-coast Maine seedbed occurred in 2009 following an unusually intense A. fundyense bloom with visible red-water conditions, but that feature disappeared by late 2010. The regional system thus has only two seedbeds with the bathymetry, sediment characteristics, currents, biology, and environmental conditions necessary to persist for decades or longer. Strong positive correlations were confirmed between the abundance of cysts in both the 0-1 and the 0-3 cm layers of sediments in autumn and geographic measures of the extent of the bloom that occurred the next year (i.e., cysts → blooms), such as the length of coastline closed due to shellfish toxicity or the southernmost latitude of shellfish closures. In general, these metrics of bloom geographic extent did not correlate with the number of cysts in sediments following the blooms (blooms → cysts). There are, however, significant positive correlations between 0-3 cm cyst abundances and metrics of the preceding bloom that are indicative of bloom intensity or vegetative cell abundance (e.g., cumulative shellfish toxicity, duration of detectable toxicity in shellfish, and bloom termination date). These data suggest that it may be possible to use cyst abundance to empirically forecast the geographic extent of the forthcoming bloom and, conversely, to use other metrics from bloom and toxicity events to forecast the size of the subsequent cyst population as the inoculum for the next year’s bloom. This is an important step towards understanding the excystment/encystment cycle in A. fundyense bloom dynamics while also augmenting our predictive capability for this HAB-forming species in the GOM.
  • Preprint
    Understanding interannual, decadal level variability in paralytic shellfish poisoning toxicity in the Gulf of Maine : the HAB Index
    ( 2013-09) Anderson, Donald M. ; Couture, Darcie A. ; Kleindinst, Judith L. ; Keafer, Bruce A. ; McGillicuddy, Dennis J. ; Martin, Jennifer L. ; Richlen, Mindy L. ; Hickey, J. Michael ; Solow, Andrew R.
    A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978 – 2011). The Maine coastline was divided into two regions - eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index – a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a “regime shift” or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a ”sawtooth” pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike’s Information Criterion. There were some differences between model fits, but none consistently gave a better fit than the others. This statistical underpinning can guide efforts to identify physical and/or biological mechanisms underlying the patterns revealed by the HAB Index. Although A. fundyense cyst survey data (limited to 9 years) do not span the entire interval of the shellfish toxicity records, this analysis leads us to hypothesize that major changes in the abundance of A. fundyense cysts may be a primary factor contributing to the decadal trends in shellfish toxicity in this region. The HAB Index approach taken here is simple but represents a novel and potentially useful tool for resource managers in many areas of the world subject to toxic HABs.
  • Preprint
    A red tide of Alexandrium fundyense in the Gulf of Maine
    ( 2013-04-15) McGillicuddy, Dennis J. ; Brosnahan, Michael L. ; Couture, Darcie A. ; He, Ruoying ; Keafer, Bruce A. ; Manning, James P. ; Martin, Jennifer L. ; Pilskaln, Cynthia H. ; Townsend, David W. ; Anderson, Donald M.
    In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.