Bastianoni Alessia

No Thumbnail Available
Last Name
Bastianoni
First Name
Alessia
ORCID
0000-0003-0314-1610

Search Results

Now showing 1 - 2 of 2
  • Article
    The helium and carbon isotope characteristics of the Andean Convergent Margin
    (Frontiers Media, 2022-06-13) Barry, Peter H. ; de Moor, J. Maarten ; Chiodi, Agostina ; Aguilera, Felipe ; Hudak, Michael R. ; Bekaert, David V. ; Turner, Stephen ; Curtice, Joshua ; Seltzer, Alan M. ; Jessen, Gerdhard L. ; Osses, Esteban ; Blamey, Jenny M. ; Amenabar, Maximiliano J. ; Selci, Matteo ; Cascone, Martina ; Bastianoni, Alessia ; Nakagawa, Mayuko ; Filipovich, Rubén ; Bustos, Emilce ; Schrenk, Matthew O. ; Buongiorno, Joy ; Ramirez, Carlos J. ; Rogers, Timothy J. ; Lloyd, Karen G. ; Giovannelli, Donato
    Subduction zones represent the interface between Earth’s interior (crust and mantle) and exterior (atmosphere and oceans), where carbon and other volatile elements are actively cycled between Earth reservoirs by plate tectonics. Helium is a sensitive tracer of volatile sources and can be used to deconvolute mantle and crustal sources in arcs; however it is not thought to be recycled into the mantle by subduction processes. In contrast, carbon is readily recycled, mostly in the form of carbon-rich sediments, and can thus be used to understand volatile delivery via subduction. Further, carbon is chemically-reactive and isotope fractionation can be used to determine the main processes controlling volatile movements within arc systems. Here, we report helium isotope and abundance data for 42 deeply-sourced fluid and gas samples from the Central Volcanic Zone (CVZ) and Southern Volcanic Zone (SVZ) of the Andean Convergent Margin (ACM). Data are used to assess the influence of subduction parameters (e.g., crustal thickness, subduction inputs, and convergence rate) on the composition of volatiles in surface volcanic fluid and gas emissions. He isotopes from the CVZ backarc range from 0.1 to 2.6 RA (n = 23), with the highest values in the Puna and the lowest in the Sub-Andean foreland fold-and-thrust belt. Atmosphere-corrected He isotopes from the SVZ range from 0.7 to 5.0 RA (n = 19). Taken together, these data reveal a clear southeastward increase in 3He/4He, with the highest values (in the SVZ) falling below the nominal range associated with pure upper mantle helium (8 ± 1 RA), approaching the mean He isotope value for arc gases of (5.4 ± 1.9 RA). Notably, the lowest values are found in the CVZ, suggesting more significant crustal inputs (i.e., assimilation of 4He) to the helium budget. The crustal thickness in the CVZ (up to 70 km) is significantly larger than in the SVZ, where it is just ∼40 km. We suggest that crustal thickness exerts a primary control on the extent of fluid-crust interaction, as helium and other volatiles rise through the upper plate in the ACM. We also report carbon isotopes from (n = 11) sites in the CVZ, where δ13C varies between −15.3‰ and −1.2‰ [vs. Vienna Pee Dee Belemnite (VPDB)] and CO2/3He values that vary by over two orders of magnitude (6.9 × 108–1.7 × 1011). In the SVZ, carbon isotope ratios are also reported from (n = 13) sites and vary between −17.2‰ and −4.1‰. CO2/3He values vary by over four orders of magnitude (4.7 × 107–1.7 × 1012). Low δ13C and CO2/3He values are consistent with CO2 removal (e.g., calcite precipitation and gas dissolution) in shallow hydrothermal systems. Carbon isotope fractionation modeling suggests that calcite precipitation occurs at temperatures coincident with the upper temperature limit for life (122°C), suggesting that biology may play a role in C-He systematics of arc-related volcanic fluid and gas emissions.
  • Article
    Surface bacterioplankton community structure crossing the Antarctic Circumpolar Current Fronts
    (MDPI, 2023-03-09) Cordone, Angelina ; Selci, Matteo ; Barosa, Bernardo ; Bastianoni, Alessia ; Bastoni, Deborah ; Bolinesi, Francesco ; Capuozzo, Rosaria ; Cascone, Martina ; Correggia, Monica ; Corso, Davide ; Di Iorio, Luciano ; Misic, Cristina ; Montemagno, Francesco ; Ricciardelli, Annarita ; Saggiomo, Maria ; Tonietti, Luca ; Mangoni, Olga ; Giovannelli, Donato
    The Antarctic Circumpolar Current (ACC) is the major current in the Southern Ocean, isolating the warm stratified subtropical waters from the more homogeneous cold polar waters. The ACC flows from west to east around Antarctica and generates an overturning circulation by fostering deep-cold water upwelling and the formation of new water masses, thus affecting the Earth's heat balance and the global distribution of carbon. The ACC is characterized by several water mass boundaries or fronts, known as the Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF), and South Antarctic Circumpolar Current Front (SACCF), identified by typical physical and chemical properties. While the physical characteristics of these fronts have been characterized, there is still poor information regarding the microbial diversity of this area. Here we present the surface water bacterioplankton community structure based on 16S rRNA sequencing from 13 stations sampled in 2017 between New Zealand to the Ross Sea crossing the ACC Fronts. Our results show a distinct succession in the dominant bacterial phylotypes present in the different water masses and suggest a strong role of sea surface temperatures and the availability of Carbon and Nitrogen in controlling community composition. This work represents an important baseline for future studies on the response of Southern Ocean epipelagic microbial communities to climate change.