Levin
Lisa A.
Levin
Lisa A.
No Thumbnail Available
21 results
Search Results
Now showing
1 - 20 of 21
-
ArticleDeep, diverse and definitely different : unique attributes of the world's largest ecosystem(Copernicus Publications on behalf of the European Geosciences Union, 2010-09-22) Ramirez-Llodra, Eva ; Brandt, A. ; Danovaro, Roberto ; De Mol, B. ; Escobar Briones, Elva ; German, Christopher R. ; Levin, Lisa A. ; Arbizu, P. Martinez ; Menot, Lenaick ; Buhl-Mortensen, P. ; Narayanaswamy, Bhavani E. ; Smith, Craig R. ; Tittensor, D. P. ; Tyler, Paul A. ; Vanreusel, A. ; Vecchione, M.The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller – indeed, minimal – proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of heterotrophic deep-sea communities, which are adapted to low energy availability. In most of these heterotrophic habitats, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs). Chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000–3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust data sets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult, but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, are promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems – such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering – is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e.g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop robust and efficient conservation and management options.
-
DatasetCatalog numbers, GenBank accession numbers, and key details for specimens collected during cruises AT37-13 (2017), AT42-03 (2018), and FK190106 (2019) and vouchered in the Scripps Institution of Oceanography Benthic Invertebrate Collection(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-01-27) Rouse, Gregory ; Cordes, Erik E. ; Levin, Lisa A. ; Orphan, Victoria J. ; Roman, ChristopherThis dataset includes catalog numbers, GenBank accession numbers, and key details for specimens collected during cruises AT37-13 (2017), AT42-03 (2018), and FK190106 (2019) and vouchered in the Scripps Institution of Oceanography Benthic Invertebrate Collection. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/838088
-
DatasetAverages and standard deviation across species for all macrofauna found on each carbonate rock collected during R/V Atlantis cruise AT37-13 in the Pacific margin of Costa Rica from May to June 2017(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-22) Levin, Lisa A. ; Rouse, Gregory ; Pereira, Olívia SoaresAverages and standard deviation across species for all macrofauna found on each carbonate rock collected during R/V Atlantis cruise AT37-13 in the Pacific margin of Costa Rica from May to June 2017 For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/747575
-
DatasetPhotobehavior for octopus (‘Octopus bimaculatus’) and squid (‘Doryteuthis opalescens’) paralarvae during exposure to 9 light irradiance levels and 4 oxygen conditions in trials conducted in April of 2019(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-03-23) McCormick, Lillian ; Levin, Lisa A. ; Oesch, NicholasThis dataset gives the results of photobehavior experiments under different oxygen conditions in larvae of the market squid (‘Doryteuthis opalescens’) and two-spot octopus (‘Octopus bimaculatus’). Photobehavior experiments were conducted to determine whether the impairment of visual physiology observed in marine invertebrate larvae (McCormick et al., 2019) is subsequently affecting visual behavior in marine larvae. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/835968
-
DatasetMacrofaunal diversity and abundance characteristics of sediment push cores collected by HOV Alvin during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific margin of Costa Rica in 2017 and 2018(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-22) Levin, Lisa A. ; Rouse, Gregory ; Ashford, Oliver S.Macrofaunal diversity and abundance characteristics of sediment push cores collected by HOV Alvin during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific margin of Costa Rica from May to June 2017, and October to November 2018 respectively. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/842061
-
DatasetMatrix of taxon by sample for hard substrates collected by HOV Alvin during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific margin of Costa Rica in 2017 and 2018.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-22) Levin, Lisa A. ; Rouse, Gregory ; Pereira, Olívia SoaresMatrix of taxon by sample for hard substrates collected by HOV Alvin during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific margin of Costa Rica in 2017 and 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/747699
-
DatasetMaximum depths of the visual luminoxyscape for four species of marine invertebrate larvae from CalCOFI stations between La Jolla, California to Point Conception between 1984-2019(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-01-24) McCormick, Lillian R. ; Oesch, Nicholas ; Levin, Lisa A.In this dataset, the maximum depths of the visual luminoxyscape for four species of marine invertebrate larvae were recorded. Data in this study are from CalCOFI stations restricted to an area from La Jolla, California to Point Conception and 215 kilometers maximum offshore (Station 60). We analyzed daytime casts (09:00-16:00) of both discrete bottle data and continuous CTD casts to represent the date range of 1984-2019 and used the oxygen and irradiance measurements to determine the visual luminoxyscape for each of the larval species. This range was bounded by the oxygen (partial pressure) where the pO2 would permit 50% minimum retinal function (V50; 13, 7.2, 10.2, and 6.8 kPa for larvae of 'Doryteuthis opalescens', 'Octopus bimaculatus', 'Metacarcinus gracilis', and 'Pleuroncodes planipes', respectively), and where there is sufficient irradiance for a visual response (0.0311 µmol photons m-2 s-1) for each species. Additionally, oxygen limits for metabolism were used to determine the depth of occurrence of the Pcrit (the oxygen below which the animal cannot maintain a constant metabolic rate). The depths of occurrence for metabolic limits were determined for larvae of 'D. opalescens' and 'O. bimaculatus'. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/859867
-
DatasetOrganized and quality-controlled CalCOFI data for CTD casts and bottle measurements from CalCOFI stations between La Jolla, California to Point Conception between 1984-2019(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-01-24) McCormick, Lillian R. ; Oesch, Nicholas ; Levin, Lisa A.In this dataset, we analyzed daytime casts (09:00-16:00) of both discrete bottle data and continuous CTD casts from CalCOFI stations restricted to an area from La Jolla, California to Point Conception and 215 km maximum offshore. This dataset has combined bottle and CTD casts to represent the date range 1984-2019. We used the oxygen and irradiance measurements to determine the visual luminoxyscape for each of the larval species. This range was bounded by the oxygen (partial pressure) where the pO2 would permit 50% minimum retinal function (V50; 13, 7.2, 10.2, and 6.8 kPa for larvae of 'Doryteuthis opalescens', 'Octopus bimaculatus', 'Metacarcinus gracilis', and 'Pleuroncodes planipes', respectively), and where there is sufficient irradiance for a visual response (0.0311 µmol photons m-2 s-1) for each species. Additionally, oxygen limits for metabolism were used to determine the depth of occurrence of the Pcrit (the oxygen below which the animal cannot maintain a constant metabolic rate). The depths of occurrence for metabolic limits were determined for larvae of 'D. opalescens' and 'O. bimaculatus'. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/860397
-
DatasetMatrix of taxon by sample for sediment push cores collected by HOV Alvin during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific margin of Costa Rica in 2017 and 2018(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-22) Levin, Lisa A. ; Rouse, GregoryMatrix of taxon (columns) by sample (rows) for sediment push cores collected by HOV Alvin during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific margin of Costa Rica from May to June 2017, and October to November 2018 respectively. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/750091
-
ArticleAnd on top of all that… coping with ocean acidification in the midst of many stressors(The Oceanography Society, 2015-06) Breitburg, Denise L. ; Salisbury, Joseph E. ; Bernhard, Joan M. ; Cai, Wei-Jun ; Dupont, Sam ; Doney, Scott C. ; Kroeker, Kristy J. ; Levin, Lisa A. ; Long, W. Christopher ; Milke, Lisa M. ; Miller, Seth H. ; Phelan, Beth ; Passow, Uta ; Seibel, Brad A. ; Todgham, Anne E. ; Tarrant, Ann M.Oceanic and coastal waters are acidifying due to processes dominated in the open ocean by increasing atmospheric CO2 and dominated in estuaries and some coastal waters by nutrient-fueled respiration. The patterns and severity of acidification, as well as its effects, are modified by the host of stressors related to human activities that also influence these habitats. Temperature, deoxygenation, and changes in food webs are particularly important co-stressors because they are pervasive, and both their causes and effects are often mechanistically linked to acidification. Development of a theoretical underpinning to multiple stressor research that considers physiological, ecological, and evolutionary perspectives is needed because testing all combinations of stressors and stressor intensities experimentally is impossible. Nevertheless, use of a wide variety of research approaches is a logical and promising strategy for improving understanding of acidification and its effects. Future research that focuses on spatial and temporal patterns of stressor interactions and on identifying mechanisms by which multiple stressors affect individuals, populations, and ecosystems is critical. It is also necessary to incorporate consideration of multiple stressors into management, mitigation, and adaptation to acidification and to increase public and policy recognition of the importance of addressing acidification in the context of the suite of other stressors with which it potentially interacts.
-
ArticleMajor impacts of climate change on deep-sea benthic ecosystems(University of California Press, 2017-02-23) Sweetman, Andrew K. ; Thurber, Andrew R. ; Smith, Craig R. ; Levin, Lisa A. ; Mora, Camilo ; Wei, Chih-Lin ; Gooday, Andrew J. ; Jones, Daniel O. B. ; Rex, Michael ; Yasuhara, Moriaki ; Ingels, Jeroen ; Ruhl, Henry A. ; Frieder, Christina A. ; Danovaro, Roberto ; Würzberg, Laura ; Baco, Amy R. ; Grupe, Benjamin ; Pasulka, Alexis ; Meyer, Kirstin S. ; Dunlop, Katherine Mary ; Henry, Lea-Anne ; Roberts, J. MurrayThe deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m) ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications.
-
ArticleThe Deep Ocean Observing Strategy: addressing global challenges in the deep sea through collaboration(Marine Technology Society, 2022-06-08) Smith, Leslie M. ; Cimoli, Laura ; LaScala-Gruenewald, Diana ; Pachiadaki, Maria G. ; Phillips, Brennan T. ; Pillar, Helen R. ; Stopa, Justin ; Baumann-Pickering, Simone ; Beaulieu, Stace E. ; Bell, Katherine L. C. ; Harden-Davies, Harriet ; Gjerde, Kristina M. ; Heimbach, Patrick ; Howe, Bruce M. ; Janssen, Felix ; Levin, Lisa A. ; Ruhl, Henry A. ; Soule, S. Adam ; Stocks, Karen ; Vardaro, Michael F. ; Wright, Dawn J.The Deep Ocean Observing Strategy (DOOS) is an international, community-driven initiative that facilitates collaboration across disciplines and fields, elevates a diverse cohort of early career researchers into future leaders, and connects scientific advancements to societal needs. DOOS represents a global network of deep-ocean observing, mapping, and modeling experts, focusing community efforts in the support of strong science, policy, and planning for sustainable oceans. Its initiatives work to propose deep-sea Essential Ocean Variables; assess technology development; develop shared best practices, standards, and cross-calibration procedures; and transfer knowledge to policy makers and deep-ocean stakeholders. Several of these efforts align with the vision of the UN Ocean Decade to generate the science we need to create the deep ocean we want. DOOS works toward (1) a healthy and resilient deep ocean by informing science-based conservation actions, including optimizing data delivery, creating habitat and ecological maps of critical areas, and developing regional demonstration projects; (2) a predicted deep ocean by strengthening collaborations within the modeling community, determining needs for interdisciplinary modeling and observing system assessment in the deep ocean; (3) an accessible deep ocean by enhancing open access to innovative low-cost sensors and open-source plans, making deep-ocean data Findable, Accessible, Interoperable, and Reusable, and focusing on capacity development in developing countries; and finally (4) an inspiring and engaging deep ocean by translating science to stakeholders/end users and informing policy and management decisions, including in international waters.
-
ArticleGlobal observing needs in the deep ocean(Frontiers Media, 2019-03-29) Levin, Lisa A. ; Bett, Brian J. ; Gates, Andrew R. ; Heimbach, Patrick ; Howe, Bruce M. ; Janssen, Felix ; McCurdy, Andrea ; Ruhl, Henry A. ; Snelgrove, Paul V. R. ; Stocks, Karen ; Bailey, David ; Baumann-Pickering, Simone ; Beaverson, Chris ; Benfield, Mark C. ; Booth, David J. ; Carreiro-Silva, Marina ; Colaço, Ana ; Eblé, Marie C. ; Fowler, Ashley M. ; Gjerde, Kristina M. ; Jones, Daniel O. B. ; Katsumata, Katsuro ; Kelley, Deborah S. ; Le Bris, Nadine ; Leonardi, Alan P. ; Lejzerowicz, Franck ; Macreadie, Peter I. ; McLean, Dianne ; Meitz, Fred ; Morato, Telmo ; Netburn, Amanda ; Pawlowski, Jan ; Smith, Craig R. ; Sun, Song ; Uchida, Hiroshi ; Vardaro, Michael F. ; Venkatesan, Ramasamy ; Weller, Robert A.The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally integrated deep-ocean observing, its status, and the key scientific questions and societal mandates driving observing requirements over the next decade. We consider the Essential Ocean Variables (EOVs) needed to address deep-ocean challenges within the physical, biogeochemical, and biological/ecosystem sciences according to the Framework for Ocean Observing (FOO), and map these onto scientific questions. Opportunities for new and expanded synergies among deep-ocean stakeholders are discussed, including academic-industry partnerships with the oil and gas, mining, cable and fishing industries, the ocean exploration and mapping community, and biodiversity conservation initiatives. Future deep-ocean observing will benefit from the greater integration across traditional disciplines and sectors, achieved through demonstration projects and facilitated reuse and repurposing of existing deep-sea data efforts. We highlight examples of existing and emerging deep-sea methods and technologies, noting key challenges associated with data volume, preservation, standardization, and accessibility. Emerging technologies relevant to deep-ocean sustainability and the blue economy include novel genomics approaches, imaging technologies, and ultra-deep hydrographic measurements. Capacity building will be necessary to integrate capabilities into programs and projects at a global scale. Progress can be facilitated by Open Science and Findable, Accessible, Interoperable, Reusable (FAIR) data principles and converge on agreed to data standards, practices, vocabularies, and registries. We envision expansion of the deep-ocean observing community to embrace the participation of academia, industry, NGOs, national governments, international governmental organizations, and the public at large in order to unlock critical knowledge contained in the deep ocean over coming decades, and to realize the mutual benefits of thoughtful deep-ocean observing for all elements of a sustainable ocean.
-
ArticleSupporting Spartina: Interdisciplinary perspective shows spartina as a distinct solid genus(Ecological Society of America, 2019-09-19) Bortolus, Alejandro ; Adam, Paul ; Adams, Janine B. ; Ainouche, Malika L. ; Ayres, Debra ; Bertness, Mark D. ; Bouma, Tjeerd J. ; Bruno, John F. ; Caçador, Isabel ; Carlton, James T. ; Castillo, Jesus M. ; Costa, Cesar S.B. ; Davy, Anthony J. ; Deegan, Linda A. ; Duarte, Bernardo ; Figueroa, Enrique ; Gerwein, Joel ; Gray, Alan J. ; Grosholz, Edwin D. ; Hacker, Sally D. ; Hughes, A. Randall ; Mateos‐Naranjo, Enrique ; Mendelssohn, Irving A. ; Morris, James T. ; Muñoz‐Rodríguez, Adolfo F. ; Nieva, Francisco J.J. ; Levin, Lisa A. ; Li, Bo ; Liu, Wenwen ; Pennings, Steven C. ; Pickart, Andrea ; Redondo‐Gómez, Susana ; Richardson, David M. ; Salmon, Armel ; Schwindt, Evangelina ; Silliman, Brian ; Sotka, Erik E. ; Stace, Clive ; Sytsma, Mark ; Temmerman, Stijn ; Turner, R. Eugene ; Valiela, Ivan ; Weinstein, Michael P. ; Weis, Judith S.In 2014, a DNA‐based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr. We do not agree with the subjective arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of both the objective phylogenetic insights and of the subjective formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider that the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina.
-
ArticleExploring the ecology of deep-sea hydrothermal vents in a metacommunity framework(Frontiers Media, 2018-02-21) Mullineaux, Lauren S. ; Metaxas, Anna ; Beaulieu, Stace E. ; Bright, Monika ; Gollner, Sabine ; Grupe, Benjamin ; Herrera, Santiago ; Kellner, Julie B. ; Levin, Lisa A. ; Mitarai, Satoshi ; Neubert, Michael G. ; Thurnherr, Andreas M. ; Tunnicliffe, Verena ; Watanabe, Hiromi K. ; Won, Yong-JinSpecies inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: (1) what is the influence of the magnitude and rate of disturbance on ecological attributes, such as time to extinction or resilience in a metacommunity; (2) what interactions between local and regional processes control species diversity, and (3) which communities are “hot spots” of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining). Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific or mid Atlantic where disturbance rates are different and information on local controls is missing.
-
ArticlePopulation connectivity and larval dispersal : using geochemical signatures in calcified structures(Oceanography Society, 2007-09) Thorrold, Simon R. ; Zacherl, Danielle C. ; Levin, Lisa A.The importance of larval dispersal to the population dynamics and biogeography of marine organisms has been recognized for almost a century (Hjort, 1914; Thorson, 1950). More recently, theoretical studies have highlighted the role that connectivity may play in determining the resilience of marine populations (Hastings and Botsford, 2006). Effective spatial management of marine capture fisheries, including the design of marine reserve networks, also requires an understanding of population connectivity (Sale et al., 2005). However, remarkably few empirical estimates of larval dispersal or population connectivity in ocean environments exist.
-
ArticleMarine genetic resources in areas beyond national jurisdiction: promoting marine scientific research and enabling equitable benefit sharing(Frontiers Media, 2021-03-31) Rogers, Alex D. ; Baco, Amy R. ; Escobar Briones, Elva ; Currie, Duncan ; Gjerde, Kristina M. ; Gobin, Judith ; Jaspars, Marcel ; Levin, Lisa A. ; Linse, Katrin ; Rabone, Muriel ; Ramirez-Llodra, Eva ; Sellanes, Javier ; Shank, Timothy M. ; Sink, Kerry ; Snelgrove, Paul V. R. ; Taylor, Michelle L. ; Wagner, Daniel ; Harden-Davies, HarrietGrowing human activity in areas beyond national jurisdiction (ABNJ) is driving increasing impacts on the biodiversity of this vast area of the ocean. As a result, the United Nations General Assembly committed to convening a series of intergovernmental conferences (IGCs) to develop an international legally-binding instrument (ILBI) for the conservation and sustainable use of marine biological diversity of ABNJ [the biodiversity beyond national jurisdiction (BBNJ) agreement] under the United Nations Convention on the Law of the Sea. The BBNJ agreement includes consideration of marine genetic resources (MGR) in ABNJ, including how to share benefits and promote marine scientific research whilst building capacity of developing states in science and technology. Three IGCs have been completed to date with the fourth delayed by the Covid pandemic. This delay has allowed a series of informal dialogues to take place between state parties, which have highlighted a number of areas related to MGR and benefit sharing that require technical guidance from ocean experts. These include: guiding principles on the access and use of MGR from ABNJ; the sharing of knowledge arising from research on MGR in ABNJ; and capacity building and technology transfer for developing states. In this paper, we explain what MGR are, the methods required to collect, study and archive them, including data arising from scientific investigation. We also explore the practical requirements of access by developing countries to scientific cruises, including the sharing of data, as well as participation in research and development on shore whilst promoting rather than hindering marine scientific research. We outline existing infrastructure and shared resources that facilitate access, research, development, and benefit sharing of MGR from ABNJ; and discuss existing gaps. We examine international capacity development and technology transfer schemes that might facilitate or complement non-monetary benefit sharing activities. We end the paper by highlighting what the ILBI can achieve in terms of access, utilization, and benefit sharing of MGR and how we might future-proof the BBNJ Agreement with respect to developments in science and technology.
-
DatasetMegafaunal presence recorded from AUV Sentry phototransects conducted at sites across the Costa Rica margin from R/V Atlantis cruises AT37-13, AT42-03 in 2017 and 2018(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-05-07) Cordes, Erik E. ; Orphan, Victoria J. ; Rouse, Gregory ; Levin, Lisa A. ; Roman, Christopher ; Cordes, ErikMegafaunal presence recorded from AUV Sentry phototransects conducted at sites across the Costa Rica margin from R/V Atlantis cruises AT37-13, AT42-03 in 2017 and 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/847032
-
DatasetSampling locations of hard substrates and push cores collected during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific Ocean off Costa Rica in 2017 and 2018.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-22) Levin, Lisa A. ; Rouse, GregorySampling locations of hard substrates and push cores collected during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific Ocean off Costa Rica in 2017 and 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/840955
-
DatasetStable Isotope Data for Invertebrates Collected from Southern California Seeps in May and August 2021(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-08-24) Levin, Lisa A. ; Goffredi, Shana ; Orphan, Victoria J.This dataset provides C and N stable isotope data for invertebrates collected by ROV from the Western Flyer 0521 (May 2021) at the Del Mar and Santa Monica Seeps and the Falkor 210726 in August 2021 at Lasuen Seep. There are also POC/PON data for one surface and one near bottom water sample collected by CTD. δ13C and δ15N measurements were made on 0.2-4 mg dry-weight samples combusted using an elemental analyzer interfaced to a continuous flow isotope ratio mass spectrometer at the Stable Isotope Facility at the University of California, Davis (SIF-UCD). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/877823