Occhipinti Patricia

No Thumbnail Available
Last Name
Occhipinti
First Name
Patricia
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton
    (Rockefeller University Press, 2016-04-04) Bridges, Andrew A. ; Jentzsch, Maximilian S. ; Oakes, Patrick W. ; Occhipinti, Patricia ; Gladfelter, Amy S.
    Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape.
  • Article
    Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals
    (Rockefeller University Press, 2011-06-13) DeMay, Bradley S. ; Bai, Xiaobo ; Howard, Louisa ; Occhipinti, Patricia ; Meseroll, Rebecca A. ; Spiliotis, Elias T. ; Oldenbourg, Rudolf ; Gladfelter, Amy S.
    The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and temporal resolution. When GFP was fused to septins, the arrangement of GFP dipoles reflected the underlying septin organization. We demonstrated in a filamentous fungus, a budding yeast, and a mammalian epithelial cell line that septin proteins were organized in an identical highly ordered fashion. Fluorescence anisotropy measurements indicated that septin filaments organized into pairs within live cells, just as has been observed in vitro. Additional support for the formation of pairs came from the observation of paired filaments at the cortex of cells using electron microscopy. Furthermore, we found that highly ordered septin structures exchanged subunits and rapidly rearranged. We conclude that septins assemble into dynamic, paired filaments in vivo and that this organization is conserved from yeast to mammals.
  • Article
    Clustered nuclei maintain autonomy and nucleocytoplasmic ratio control in a syncytium
    (American Society for Cell Biology, 2016-05-18) Dundon, Samantha E.R. ; Chang, Shyr-Shea ; Kumar, Abhishek ; Occhipinti, Patricia ; Shroff, Hari ; Roper, Marcus ; Gladfelter, Amy S.
    Nuclei in syncytia found in fungi, muscles, and tumors can behave independently despite cytoplasmic translation and the homogenizing potential of diffusion. We use a dynactin mutant strain of the multinucleate fungus Ashbya gossypii with highly clustered nuclei to assess the relative contributions of nucleus and cytoplasm to nuclear autonomy. Remarkably, clustered nuclei maintain cell cycle and transcriptional autonomy; therefore some sources of nuclear independence function even with minimal cytosol insulating nuclei. In both nuclear clusters and among evenly spaced nuclei, a nucleus’ transcriptional activity dictates local cytoplasmic contents, as assessed by the localization of several cyclin mRNAs. Thus nuclear activity is a central determinant of the local cytoplasm in syncytia. Of note, we found that the number of nuclei per unit cytoplasm was identical in the mutant to that in wild-type cells, despite clustered nuclei. This work demonstrates that nuclei maintain autonomy at a submicrometer scale and simultaneously maintain a normal nucleocytoplasmic ratio across a syncytium up to the centimeter scale.
  • Preprint
    Septin assemblies form by diffusion-driven annealing on membranes
    ( 2013-12) Bridges, Andrew A. ; Zhang, Huaiying ; Mehta, Shalin B. ; Occhipinti, Patricia ; Tani, Tomomi ; Gladfelter, Amy S.
    Septins assemble into filaments and higher-order structures that act as scaffolds for diverse cell functions including cytokinesis, cell polarity, and membrane remodeling. Despite their conserved role in cell organization, little is known about how septin filaments elongate and are knit together into higher-order assemblies. Using fluorescence correlation spectroscopy (FCS), we determined that cytosolic septins are in small complexes suggesting that septin filaments are not formed in the cytosol. When the plasma membrane of live cells is monitored by total internal reflection fluorescence (TIRF) microscopy, we see that septin complexes of variable size diffuse in two dimensions. Diffusing septin complexes collide and make end-on associations to form elongated filaments and higher-order structures, an assembly process we call annealing. Septin assembly by annealing can be reconstituted in vitro on supported lipid bilayers with purified septin complexes. Using the reconstitution assay, we show that septin filaments are highly flexible, grow only from free filament ends and do not exchange subunits in the middle of filaments. This work shows for the first time that annealing is an intrinsic property of septins in the presence of membranes and demonstrates that cells exploit this mechanism to build large septin assemblies.