Halldórsson Saemundur

No Thumbnail Available
Last Name
Halldórsson
First Name
Saemundur
ORCID
0000-0002-9311-7704

Search Results

Now showing 1 - 6 of 6
  • Article
    Hot and heterogenous high-he-3/He-4 components: New constraints from proto-Iceland plume lavas from Baffin Island
    (American Geophysical Union, 2019-11-07) Willhite, Lori N. ; Jackson, Matthew G. ; Blichert-Toft, Janne ; Bindeman, Ilya N. ; Kurz, Mark D. ; Halldórsson, Saemundur ; Harðardóttir, Sunna ; Gazel, Esteban ; Price, Allison A. ; Byerly, Benjamin L.
    The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived 3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8 RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5 RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3 RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (>15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have 87Sr/86Sr = 0.703008–0.703021, 143Nd/144Nd = 0.513094–0.513128, 176Hf/177Hf = 0.283265–0.283284, 206Pb/204Pb = 17.7560–17.9375, 3He/4He up to 39.9 RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence of two geochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes.
  • Article
    Temporal evolution of primordial tungsten-182 and he-3/He-4 signatures in the Iceland mantle plume
    (Elsevier, 2019-07-24) Mundl-Petermeier, Andrea ; Walker, Richard J. ; Jackson, Matthew G. ; Blichert-Toft, Janne ; Kurz, Mark D. ; Halldórsson, Saemundur
    Studies of short-lived radiogenic isotope systems and noble gas isotopic compositions of plume-derived rocks suggest the existence of primordial domains in Earth's present-day mantle. Tungsten-182 anomalies together with high 3He/4He in Phanerozoic rocks from large igneous provinces and ocean island basalts demonstrate the preservation of early-formed (within the first 60 Ma of solar system history) mantle domains tapped by modern mantle plumes. It has proven difficult to link the evidence for primordial domains with geochemical evidence for more recent processes, such as recycling. The Greenland-Iceland plume system, starting with eruptions of the Paleocene North Atlantic Igneous Province, is later manifested in the mid-Miocene to modern volcanic products of Iceland. Here, we report Pb isotopic compositions, μ182W (deviations in 182W/184W of a sample from a laboratory reference standard in parts per million), and 3He/4He, as well as highly siderophile element concentrations and Re-Os isotopic systematics of basaltic samples erupted at different times during the ~60 Ma history of the Greenland-Iceland plume. Paleocene samples from Greenland, representing the early stage of the mantle plume, are characterized by variable 3He/4He ranging from 7 to 48 R/RA (measured 3He/4He normalized to the atmospheric ratio) and an average μ182W of −4.0 ± 3.6 (2SD), within modern upper mantle-like values of 0 ± 4.5. The basalts from Iceland can be divided into two groups based on their Pb isotope compositions. One group, consisting mostly of Miocene basalts, is characterized by 206Pb/204Pb ranging from ~18.4 to 18.5, 3He/4He ranging from 17.8 to 40.2 R/RA, and μ182W values ranging from +1.7 to −9.1 ± 4.5. The other group, consisting mainly of Pleistocene and Holocene basalts, is characterized by higher 206Pb/204Pb, ranging from ~18.7 to 19.2, 3He/4He ranging from 7.9 to 25.7 R/RA, and μ182W values ranging from −0.6 to −11.7 ± 4.5. Collectively, the Greenland-Iceland suite examined requires mixing between a minimum of three mantle source domains characterized by distinct Pb-He-W isotopic compositions, in order to account for this range of isotopic data. The temporal changes in the isotopic data for these rocks appear to track the dominant contributing plume components as the system evolved. One of the domains is indistinguishable from the ambient upper oceanic mantle and contributed substantial material throughout the time progression. The other two domains are most likely primordial reservoirs that underwent limited de-gassing. Given the negative μ182W values in some rocks, one of these domains likely formed within the first 60 Ma of solar system history and is a major contributor to the youngest basalts. The isotopic characteristics of Greenland-Iceland plume-derived rocks reveal episodic changes in the source component proportions.
  • Article
    High (3)He/(4)He in central Panama reveals a distal connection to the Galápagos plume
    (National Academy of Sciences, 2021-11-23) Bekaert, David V. ; Gazel, Esteban ; Turner, Stephen ; Behn, Mark D. ; de Moor, J. Maarten ; Zahirovic, Sabin ; Manea, Vlad C. ; Hoernle, Kaj A. ; Fischer, Tobias P. ; Hammerstrom, Alexander ; Seltzer, Alan M. ; Kulongoski, Justin T. ; Patel, Bina S. ; Schrenk, Matthew O. ; Halldórsson, Saemundur ; Nakagawa, Mayuko ; Ramírez, Carlos J. ; Krantz, John A. ; Yucel, Mustafa ; Ballentine, Christopher J. ; Giovannelli, Donato ; Lloyd, Karen G. ; Barry, Peter H.
    It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (>1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3He/4He (up to 8.9RA) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3He/4He >10.3RA (and potentially up to 26RA, similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1RA). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3He/4He values in central Panama are likely derived from the infiltration of a Galápagos plume–like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a “mantle wind” toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.
  • Article
    Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau
    (Nature Research, 2021-07-06) Zhang, Maoliang ; Guo, Zhengfu ; Xu, Sheng ; Barry, Peter H. ; Sano, Yuji ; Zhang, Lihong ; Halldórsson, Saemundur ; Chen, Ai-Ti ; Cheng, Zhihui ; Liu, Cong-Qiang ; Li, Si-Liang ; Lang, Yun-Chao ; Zheng, Guodong ; Li, Zhongping ; Li, Liwu ; Li, Ying
    The episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.
  • Article
    Ultrahigh-precision noble gas isotope analyses reveal pervasive subsurface fractionation in hydrothermal systems
    (American Association for the Advancement of Science, 2023-03-16) Bekaert, David V. ; Barry, Peter H. ; Broadley, Michael W. ; Byrne, David J. ; Marty, Bernard ; Ramírez, Carlos J. ; de Moor, J Maarten ; Rodriguez, Alejandro ; Hudak, Michael R. ; Subhas, Adam V. ; Halldórsson, Saemundur A. ; Stefánsson, Andri ; Caracausi, Antonio ; Lloyd, Karen G. ; Giovannelli, Donato ; Seltzer, Alan M.
    Mantle-derived noble gases in volcanic gases are powerful tracers of terrestrial volatile evolution, as they contain mixtures of both primordial (from Earth's accretion) and secondary (e.g., radiogenic) isotope signals that characterize the composition of deep Earth. However, volcanic gases emitted through subaerial hydrothermal systems also contain contributions from shallow reservoirs (groundwater, crust, atmosphere). Deconvolving deep and shallow source signals is critical for robust interpretations of mantle-derived signals. Here, we use a novel dynamic mass spectrometry technique to measure argon, krypton, and xenon isotopes in volcanic gas with ultrahigh precision. Data from Iceland, Germany, United States (Yellowstone, Salton Sea), Costa Rica, and Chile show that subsurface isotope fractionation within hydrothermal systems is a globally pervasive and previously unrecognized process causing substantial nonradiogenic Ar-Kr-Xe isotope variations. Quantitatively accounting for this process is vital for accurately interpreting mantle-derived volatile (e.g., noble gas and nitrogen) signals, with profound implications for our understanding of terrestrial volatile evolution.
  • Article
    Deep magma degassing and volatile fluxes through volcanic hydrothermal systems: Insights from the Askja and Kverkfjöll volcanoes, Iceland
    (Elsevier, 2023-03-17) Ranta, Eemu ; Halldórsson, Sæmundur A. ; Barry, Peter H. ; Ono, Shuhei ; Robin, Jóhann Gunnarsson ; Kleine, Barbara I. ; Ricci, Andrea ; Fiebig, Jens ; Sveinbjörnsdóttir, Árný E. ; Stefánsson, Andri
    Mantle volatiles are transported to Earth's crust and surface by basaltic volcanism. During subaerial eruptions, vast amounts of carbon, sulfur and halogens can be released to the atmosphere during a short time-interval, with impacts ranging in scale from the local environment to the global climate. By contrast, passive volatile release at the surface originating from magmatic intrusions is characterized by much lower flux, yet may outsize eruptive volatile quantities over long timescales. Volcanic hydrothermal systems (VHSs) act as conduits for such volatile release from degassing intrusions and can be used to gauge the contribution of intrusive magmatism to global volatile cycles. Here, we present new compositional and isotopic (δD and δ18O-H2O, 3He/4He, δ13C-CO2, Δ33S-δ34S-H2S and SO4) data for thermal waters and fumarole gases from the Askja and Kverkfjöll volcanoes in central Iceland. We use the data together with magma degassing modelling and mass balance calculations to constrain the sources of volatiles in VHSs and to assess the role of intrusive magmatism to the volcanic volatile emission budgets in Iceland.The CO2/ΣS (10−30), 3He/4He (8.3–10.5 RA; 3He/4He relative to air), δ13C-CO2 (−4.1 to −0.2 ‰) and Δ33S-δ34S-H2S (−0.031 to 0.003 ‰ and −1.5 to +3.6‰) values in high-gas flux fumaroles (CO2 > 10 mmol/mol) are consistent with an intrusive magmatic origin for CO2 and S at Askja and Kverkfjöll. We demonstrate that deep (0.5–5 kbar, equivalent to ∼2–18 km crustal depth) decompression degassing of basaltic intrusions in Iceland results in CO2 and S fluxes of 330–5060 and 6–210 kt/yr, respectively, which is sufficient to account for the estimated CO2 flux of Icelandic VHSs (3365–6730 kt/yr), but not the VHS S flux (220–440 kt/yr). Secondary, crystallization-driven degassing from maturing intrusions and leaching of crustal rocks are suggested as additional sources of S. Only a minor proportion of the mantle flux of Cl is channeled via VHSs whereas the H2O flux remains poorly constrained, because magmatic signals in Icelandic VHSs are masked by a dominant shallow groundwater component of meteoric water origin. These results suggest that the bulk of the mantle CO2 and S flux to the atmosphere in Iceland is supplied by intrusive, not eruptive magmatism, and is largely vented via hydrothermal fields.•New fumarole and thermal water data for Askja and Kverkfjöll volcanoes, Iceland.•Data compared to modelled compositions and fluxes of magmatic gas.•Fumarole compositions compatible with origin of CO2 and S from degassing intrusions.•Intrusive magmatic fluxes sufficient to sustain hydrothermal fluxes of CO2 and S in Iceland•Magma degassing insignificant/minor source of H2O and Cl to Icelandic hydrothermal fluids