Au Whitlow W. L.

No Thumbnail Available
Last Name
First Name
Whitlow W. L.

Search Results

Now showing 1 - 5 of 5
  • Article
    Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring
    (Acoustical Society of America, 2011-01) Stimpert, Alison K. ; Au, Whitlow W. L. ; Parks, Susan E. ; Hurst, Thomas P.
    Humpback whales (Megaptera novaeangliae) are one of several baleen whale species in the Northwest Atlantic that coexist with vessel traffic and anthropogenic noise. Passive acoustic monitoring strategies can be used in conservation management, but the first step toward understanding the acoustic behavior of a species is a good description of its acoustic repertoire. Digital acoustic tags (DTAGs) were placed on humpback whales in the Stellwagen Bank National Marine Sanctuary to record and describe the non-song sounds being produced in conjunction with foraging activities. Peak frequencies of sounds were generally less than 1 kHz, but ranged as high as 6 kHz, and sounds were generally less than 1 s in duration. Cluster analysis distilled the dataset into eight groups of sounds with similar acoustic properties. The two most stereotyped and distinctive types (“wops” and “grunts”) were also identified aurally as candidates for use in passive acoustic monitoring. This identification of two of the most common sound types will be useful for moving forward conservation efforts on this Northwest Atlantic feeding ground.
  • Article
    The acoustic field on the forehead of echolocating Atlantic bottlenose dolphins (Tursiops truncatus)
    (Acoustical Society of America, 2010-09) Au, Whitlow W. L. ; Houser, Dorian S. ; Finneran, James J. ; Lee, Wu-Jung ; Talmadge, Lois A. ; Moore, Patrick W.
    Arrays of up to six broadband suction cup hydrophones were placed on the forehead of two bottlenose dolphins to determine the location where the beam axis emerges and to examine how signals in the acoustic near-field relate to signals in the far-field. Four different array geometries were used; a linear one with hydrophones arranged along the midline of the forehead, and two around the front of the melon at 1.4 and 4.2 cm above the rostrum insertion, and one across the melon in certain locations not measured by other configurations. The beam axis was found to be close to the midline of the melon, approximately 5.4 cm above the rostrum insert for both animals. The signal path coincided with the low-density, low-velocity core of the melon; however, the data suggest that the signals are focused mainly by the air sacs. Slight asymmetry in the signals were found with higher amplitudes on the right side of the forehead. Although the signal waveform measured on the melon appeared distorted, when they are mathematically summed in the far-field, taking into account the relative time of arrival of the signals, the resultant waveform matched that measured by the hydrophone located at 1 m.
  • Article
    Possible limitations of dolphin echolocation: a simulation study based on a cross-modal matching experiment
    (Nature Research, 2021-03-23) Wei, Chong ; Hoffmann-Kuhnt, Matthias ; Au, Whitlow W. L. ; Ho, Abel Zhong Hao ; Matrai, Patricia A. ; Feng, Wen ; Ketten, Darlene R. ; Zhang, Yu
    Dolphins use their biosonar to discriminate objects with different features through the returning echoes. Cross-modal matching experiments were conducted with a resident bottlenose dolphin (Tursiops aduncus). Four types of objects composed of different materials (water-filled PVC pipes, air-filled PVC pipes, foam ball arrays, and PVC pipes wrapped in closed-cell foam) were used in the experiments, respectively. The size and position of the objects remained the same in each case. The data collected in the experiment showed that the dolphin’s matching accuracy was significantly different across the cases. To gain insight into the underlying mechanism in the experiments, we used finite element methods to construct two-dimensional target detection models of an echolocating dolphin in the vertical plane, based on computed tomography scan data. The acoustic processes of the click’s interaction with the objects and the surrounding media in the four cases were simulated and compared. The simulation results provide some possible explanations for why the dolphin performed differently when discriminating the objects that only differed in material composition in the previous matching experiments.
  • Article
    Biosonar signal propagation in the harbor porpoise's (Phocoena phocoena) head : the role of various structures in the formation of the vertical beam
    (Acoustical Society of America, 2017-06-07) Wei, Chong ; Au, Whitlow W. L. ; Ketten, Darlene R. ; Song, Zhongchang ; Zhang, Yu
    Harbor porpoises (Phocoena phocoena) use narrow band echolocation signals for detecting and locating prey and for spatial orientation. In this study, acoustic impedance values of tissues in the porpoise's head were calculated from computer tomography (CT) scan and the corresponding Hounsfield Units. A two-dimensional finite element model of the acoustic impedance was constructed based on CT scan data to simulate the acoustic propagation through the animal's head. The far field transmission beam pattern in the vertical plane and the waveforms of the receiving points around the forehead were compared with prior measurement results, the simulation results were qualitatively consistent with the measurement results. The role of the main structures in the head such as the air sacs, melon and skull in the acoustic propagation was investigated. The results showed that air sacs and skull are the major components to form the vertical beam. Additionally, both beam patterns and sound pressure of the sound waves through four positions deep inside the melon were demonstrated to show the role of the melon in the biosonar sound propagation processes in the vertical plane.
  • Article
    Finite element simulation of broadband biosonar signal propagation in the near- and far-field of an echolocating Atlantic bottlenose dolphin (Tursiops truncatus)
    (Acoustical Society of America, 2018-05-02) Wei, Chong ; Au, Whitlow W. L. ; Ketten, Darlene R. ; Zhang, Yu
    Bottlenose dolphins project broadband echolocation signals for detecting and locating prey and predators, and for spatial orientation. There are many unknowns concerning the specifics of biosonar signal production and propagation in the head of dolphins and this manuscript represents an effort to address this topic. A two-dimensional finite element model was constructed using high resolution CT scan data. The model simulated the acoustic processes in the vertical plane of the biosonar signal emitted from the phonic lips and propagated into the water through the animal's head. The acoustic field on the animal's forehead and the farfield transmission beam pattern of the echolocating dolphin were determined. The simulation results and prior acoustic measurements were qualitatively extremely consistent. The role of the main structures on the sound propagation pathway such as the air sacs, melon, and connective tissue was investigated. Furthermore, an investigation of the driving force at the phonic lips for dolphins that emit broadband echolocation signals and porpoises that emit narrowband echolocation signals suggested that the driving force is different for the two types of biosonar. Finally, the results provide a visual understanding of the sound transmission in dolphin's biosonar.