Ramírez Gustavo A.

No Thumbnail Available
Last Name
First Name
Gustavo A.

Search Results

Now showing 1 - 2 of 2
  • Article
    Environmental factors shaping bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California
    (Public Library of Science, 2021-09-08) Ramírez, Gustavo A. ; Mara, Paraskevi ; Sehein, Taylor R. ; Wegener, Gunter ; Chambers, Christopher R. ; Joye, Samantha B. ; Peterson, Richard N. ; Philippe, Aurélie ; Burgaud, Gaëtan ; Edgcomb, Virginia P. ; Teske, Andreas P.
    The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.
  • Article
    Characteristics and evolution of sill-driven off-axis hydrothermalism in Guaymas Basin - the Ringvent site
    (Nature Research, 2019-09-25) Teske, Andreas ; McKay, Luke J. ; Ravelo, Ana Christina ; Aiello, Ivano ; Mortera, Carlos ; Núñez-Useche, Fernando ; Canet, Carles ; Chanton, Jeffrey P. ; Brunner, Benjamin ; Hensen, Christian ; Ramírez, Gustavo A. ; Sibert, Ryan J. ; Turner, Tiffany ; Chambers, Christopher R. ; Buckley, Andrew ; Joye, Samantha B. ; Soule, S. Adam ; Lizarralde, Daniel
    The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems.