Boiteau Rene M.

No Thumbnail Available
Last Name
First Name
Rene M.

Search Results

Now showing 1 - 8 of 8
  • Preprint
    An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS
    ( 2015-03-11) Boiteau, Rene M. ; Repeta, Daniel J.
    Siderophores are thought to play an important role in iron cycling in the ocean, but relatively few marine siderophores have been identified. Sensitive, high throughput methods hold promise for expediting the discovery and characterization of new siderophores produced by marine microbes. We developed a methodology for siderophore characterization that combines liquid chromatography (LC) inductively coupled plasma mass spectrometry (ICPMS) with high resolution electrospray ionization mass spectrometry (ESIMS). To demonstrate this approach, we investigated siderophore production by the marine cyanobacteria Synechococcus sp. PCC 7002. Three hydroxamate siderophores, synechobactin A-C, have been previously isolated and characterized from this strain. These compounds consist of an iron binding head group attached to a fatty acid side chain of variable length (C12, C10, and C8 respectively). In this study, we detected six iron-containing compounds in Synechococcus sp. PCC 7002 media by LC-ICPMS. To identify the molecular ions of these siderophores, we aligned the chromatographic retention times of peaks from the LC-ICPMS chromatogram with features detected from LC-ESIMS spectra using an algorithm designed to recognize metal isotope patterns. Three of these compounds corresponded to synechobactins A (614 m/z), B (586m/z), and C (558m/z). The MS2 spectra of these compounds revealed diagnostic synechobactin fragmentation patterns which were used to confirm the identity of the three unknown compounds (600, 628, and 642 m/z) as new members of the synechobactin suite with side chain lengths of 11, 13, and 14 carbons. These results demonstrate the potential of combined LCMS techniques for the identification of novel iron-organic complexes.
  • Article
    Authigenic uranium in foraminiferal coatings : a proxy for ocean redox chemistry
    (American Geophysical Union, 2012-09-08) Boiteau, Rene M. ; Greaves, Mervyn ; Elderfield, Henry
    The rate of uranium accumulation in oceanic sediments from seawater is controlled by bottom water oxygen concentrations and organic carbon fluxes—two parameters that are linked to deep ocean storage of CO2. To investigate glacial-interglacial changes in what is known as authigenic U, we have developed a rapid method for its determination as a simple addition to a procedure for foraminiferal trace element analysis. Foraminiferal calcite acts as a low U substrate (U/Ca < 15 nmol/mol) upon which authigenic U accumulates in reducing sediments. We measured a downcore record of foraminiferal U/Ca from ODP Site 1090 in the South Atlantic and found that U/Ca ratios increase by 70–320 nmol/mol during glacial intervals. There is a significant correlation between U/Ca records of benthic and planktonic foraminiferal species and between U/Ca and bulk sediment authigenic U. These results indicate that elevated U/Ca ratios are attributable to the accumulation of authigenic U coatings in sediments. Foraminiferal Mn/Ca ratios were lower during the glacial intervals, suggesting that the observed U accumulation on the shells is not directly linked to U incorporation into secondary manganese phases. Thus, foraminiferal U/Ca ratios may provide useful information on past changes in sediment redox conditions.
  • Article
    Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal Transect
    (Frontiers Media, 2016-11-30) Boiteau, Rene M. ; Till, Claire P. ; Ruacho, Angel ; Bundy, Randelle M. ; Hawco, Nicholas J. ; McKenna, Amy M. ; Barbeau, Katherine A. ; Bruland, Kenneth W. ; Saito, Mak A. ; Repeta, Daniel J.
    Organic ligands form strong complexes with many trace elements in seawater. Various metals can compete for the same ligand chelation sites, and the final speciation of bound metals is determined by relative binding affinities, concentrations of binding sites, uncomplexed metal concentrations, and association/dissociation kinetics. Different ligands have a wide range of metal affinities and specificities. However, the chemical composition of these ligands in the marine environment remains poorly constrained, which has hindered progress in modeling marine metal speciation. In this study, we detected and characterized natural ligands that bind copper (Cu) and nickel (Ni) in the eastern South Pacific Ocean with liquid chromatography tandem inductively coupled plasma mass spectrometry (LC-ICPMS), and high-resolution electrospray ionization mass spectrometry (ESIMS). Dissolved Cu, Ni, and ligand concentrations were highest near the coast. Chromatographically unresolved polar compounds dominated ligands isolated near the coast by solid phase extraction. Offshore, metal and ligand concentrations decreased, but several new ligands appeared. One major ligand was detected that bound both Cu2+ and Ni2+. Based on accurate mass and fragmentation measurements, this compound has a molecular formula of [C20H21N4O8S2+M]+ (M = metal isotope) and contains several azole-like metal binding groups. Additional lipophilic Ni complexes were also present only in oligotrophic waters, with masses of 649, 698, and 712 m/z (corresponding to the 58Ni metal complex). Molecular formulae of [C32H54N3O6S2Ni]+ and [C33H56N3O6S2Ni]+ were determined for two of these compounds. Addition of Cu and Ni to the samples also revealed the presence of additional compounds that can bind both Ni and Cu. Although these specific compounds represent a small fraction of the total dissolved Cu and Ni pool, they highlight the compositional diversity and spatial heterogeneity of marine Ni and Cu ligands, as well as variability in the extent to which different metals in the same environment compete for ligand binding.
  • Article
    Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry
    (Frontiers Media, 2021-03-13) Li, Jingxuan ; Boiteau, Rene M. ; Babcock-Adams, Lydia ; Song, Zhongchang ; McIlvin, Matthew R. ; Repeta, Daniel J.
    Metabolites that incorporate elements other than carbon, nitrogen, hydrogen and oxygen can be selectively detected by inductively coupled mass spectrometry (ICPMS). When used in parallel with chromatographic separations and conventional electrospray ionization mass spectrometry (ESIMS), ICPMS allows the analyst to quickly find, characterize and identify target metabolites that carry nutrient elements (P, S, trace metals; “nutrient metabolites”), which are of particular interest to investigations of microbial biogeochemical cycles. This approach has been applied to the study of siderophores and other trace metal organic ligands in the ocean. The original method used mass search algorithms that relied on the ratio of stable isotopologues of iron, copper and nickel to assign mass spectra collected by ESIMS to metabolites carrying these elements detected by ICPMS. However, while isotopologue-based mass assignment algorithms were highly successful in characterizing metabolites that incorporate some trace metals, they do not realize the whole potential of the ICPMS/ESIMS approach as they cannot be used to assign the molecular ions of metabolites with monoisotopic elements or elements for which the ratio of stable isotopes is not known. Here we report a revised ICPMS/ESIMS method that incorporates a number of changes to the configuration of instrument hardware that improves sensitivity of the method by a factor of 4–5, and allows for more accurate quantitation of metabolites. We also describe a new suite of mass search algorithms that can find and characterize metabolites that carry monoisotopic elements. We used the new method to identify siderophores in a laboratory culture of Vibrio cyclitrophicus and a seawater sample collected in the North Pacific Ocean, and to assign molecular ions to monoisotopic cobalt and iodine nutrient metabolites in extracts of a laboratory culture of the marine cyanobacterium Prochorococcus MIT9215.
  • Article
    Bacterial quorum-sensing signal arrests phytoplankton cell division and impacts virus-induced mortality
    (American Society for Microbiology, 2021-05-12) Pollara, Scott B. ; Becker, Jamie W. ; Nunn, Brook L. ; Boiteau, Rene M. ; Repeta, Daniel J. ; Mudge, Miranda C. ; Downing, Grayton ; Chase, Davis ; Harvey, Elizabeth L. ; Whalen, Kristen E.
    Interactions between phytoplankton and heterotrophic bacteria fundamentally shape marine ecosystems by controlling primary production, structuring marine food webs, mediating carbon export, and influencing global climate. Phytoplankton-bacterium interactions are facilitated by secreted compounds; however, linking these chemical signals, their mechanisms of action, and their resultant ecological consequences remains a fundamental challenge. The bacterial quorum-sensing signal 2-heptyl-4-quinolone (HHQ) induces immediate, yet reversible, cellular stasis (no cell division or mortality) in the coccolithophore Emiliania huxleyi; however, the mechanism responsible remains unknown. Using transcriptomic and proteomic approaches in combination with diagnostic biochemical and fluorescent cell-based assays, we show that HHQ exposure leads to prolonged S-phase arrest in phytoplankton coincident with the accumulation of DNA damage and a lack of repair despite the induction of the DNA damage response (DDR). While this effect is reversible, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing a new role of quorum-sensing signals in regulating multitrophic interactions. Furthermore, our data demonstrate that in situ measurements of HHQ coincide with areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial communication signals as emerging players that may be one of the contributing factors that help structure complex microbial communities throughout the ocean.
  • Article
    Dynamic mercury methylation and demethylation in oligotrophic marine water
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-11-02) Munson, Kathleen M. ; Lamborg, Carl H. ; Boiteau, Rene M. ; Saito, Mak A.
    Mercury bioaccumulation in open-ocean food webs depends on the net rate of inorganic mercury conversion to monomethylmercury in the water column. We measured significant methylation rates across large gradients in oxygen utilization in the oligotrophic central Pacific Ocean. Overall, methylation rates over 24h incubation periods were comparable to those previously published from Arctic and Mediterranean waters despite differences in productivity between these marine environments. In contrast to previous studies that have attributed Hg methylation to heterotrophic bacteria, we measured higher methylation rates in filtered water compared to unfiltered water. Furthermore, we observed enhanced demethylation of newly produced methylated mercury in incubations of unfiltered water relative to filtered water. The addition of station-specific bulk filtered particulate matter, a source of inorganic mercury substrate and other possibly influential compounds, did not stimulate sustained methylation, although transient enhancement of methylation occurred within 8h of addition. The addition of dissolved inorganic cobalt also produced dramatic, if transient, increases in mercury methylation. Our results suggest important roles for noncellular or extracellular methylation mechanisms and demethylation in determining methylated mercury concentrations in marine oligotrophic waters. Methylation and demethylation occur dynamically in the open-ocean water column, even in regions with low accumulation of methylated mercury.
  • Article
    Distinct siderophores contribute to iron cycling in the mesopelagic at Station ALOHA
    (Frontiers Media, 2018-03-01) Bundy, Randelle M. ; Boiteau, Rene M. ; McLean, Craig ; Turk-Kubo, Kendra A. ; McIlvin, Matthew R. ; Saito, Mak A. ; Van Mooy, Benjamin A. S. ; Repeta, Daniel J.
    The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores were measured between the surface and 400 m at Station ALOHA, a long term ecological study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low throughout the water column and strong organic Fe-binding ligands exceeded dissolved Fe at all depths; varying from 0.9 nmol L−1 in the surface to 1.6 nmol L−1 below 150 m. Although Fe does not appear to limit microbial production, we nevertheless found siderophores at nearly all depths, indicating some populations of microbes were responding to Fe stress. Ferrioxamine siderophores were most abundant in the upper water column, with concentrations between 0.1 and 2 pmol L−1, while a suite of amphibactins were found below 200 m with concentrations between 0.8 and 11 pmol L−1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate disparate strategies for acquiring Fe from dust in the upper water column and recycled organic matter in the lower water column. Amphibactins were found to have conditional stability constants (log KcondFeL1,Fe′) ranging from 12.0 to 12.5, while ferrioxamines had much stronger conditional stability constants ranging from 14.0 to 14.4, within the range of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe speciation at Station ALOHA to compare the relative concentration of inorganic and siderophore complexed Fe. The results indicate that the concentration of Fe bound to siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe acquisition by microbes at our study site. Finally, we observed rapid production of ferrioxamine E by particle-associated bacteria during incubation of freshly collected sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon metabolism and nutrient regeneration in the mesopelagic.
  • Thesis
    Molecular determination of marine iron ligands by mass spectrometry
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2016-02) Boiteau, Rene M.
    Marine microbes produce a wide variety of metal binding organic ligands that regulate the solubility and availability of biologically important metals such as iron, copper, cobalt, and zinc. In marine environments where the availability of iron limits microbial growth and carbon fixation rates, the ability to access organically bound iron confers a competitive advantage. Thus, the compounds that microbes produced to acquire iron play an important role in biogeochemical carbon and metal cycling. However, the source, abundance, and identity of these compounds are poorly understood. To investigate these processes, sensitive methodologies were developed to gain a compound-specific window into marine iron speciation by combining trace metal clean sample collection and chromatography with inductively coupled plasma mass spectrometry (LCICPMS) and electrospray ionization mass spectrometry (LC-ESIMS). Coupled with isotope pattern assisted search algorithms, these tools provide a means to quantify and isolate specific iron binding ligands from seawater and marine cultures, identify them based on their mass and fragmentation spectra, and investigate their metal binding kinetics. Using these techniques, we investigated the distribution and diversity of marine iron binding ligands. In cultures, LC-ICPMS-ESIMS was used to identify new members of siderophore classes produced by marine cyanobacteria and heterotrophic bacteria, including synechobactins and marinobactins. Applications to natural seawater samples from the Pacific Ocean revealed a wide diversity of both known and novel metal compounds that are linked to specific nutrient regimes. Ferrioxamines B, E, and G were identified in productive coastal waters near California and Peru, in oligotrophic waters of the North and South Pacific Gyre, and in association with zooplankton grazers. Siderophore concentrations were up to five-fold higher in iron-deficient offshore waters (9pM) and were dominated by amphibactins, amphiphilic siderophores that partition into cell membranes. Furthermore, synechobactins were detected within nepheloid layers along the continental shelf. These siderophores reflect adaptations that impact dissolved iron bioavailability and thus have important consequences for marine ecosystem community structures and primary productivity. The ability to map and characterize these compounds has opened new opportunities to better understand mechanisms that link metals with the microbes that use them.