Moeller Peter D. R.

No Thumbnail Available
Last Name
First Name
Peter D. R.

Search Results

Now showing 1 - 2 of 2
  • Article
    The coastal environment and human health : microbial indicators, pathogens, sentinels and reservoirs
    (BioMed Central, 2008-11-07) Stewart, Jill R. ; Gast, Rebecca J. ; Fujioka, Roger S. ; Solo-Gabriele, Helena M. ; Meschke, J. Scott ; Amaral-Zettler, Linda A. ; del Castillo, Erika ; Polz, Martin F. ; Collier, Tracy K. ; Strom, Mark S. ; Sinigalliano, Christopher D. ; Moeller, Peter D. R. ; Holland, A. Fredrick
    Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
  • Article
    Centers for Oceans and Human Health : a unified approach to the challenge of harmful algal blooms
    (BioMed Central, 2008-11-07) Erdner, Deana L. ; Dyble, Julianne ; Parsons, Michael L. ; Stevens, Richard C. ; Hubbard, Katherine A. ; Wrabel, Michele L. ; Moore, Stephanie K. ; Lefebvre, Kathi A. ; Anderson, Donald M. ; Bienfang, Paul ; Bidigare, Robert R. ; Parker, Micaela S. ; Moeller, Peter D. R. ; Brand, Larry E. ; Trainer, Vera L.
    Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics. In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine. Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health.