Ellis Peter W.

No Thumbnail Available
Last Name
Ellis
First Name
Peter W.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Natural climate solutions for the United States
    (American Association for the Advancement of Science, 2018-11-14) Fargione, Joseph E. ; Bassett, Steven ; Boucher, Timothy ; Bridgham, Scott D. ; Conant, Richard T. ; Cook-Patton, Susan C. ; Ellis, Peter W. ; Falcucci, Alessandra ; Fourqurean, James W. ; Gopalakrishna, Trisha ; Gu, Huan ; Henderson, Benjamin ; Hurteau, Matthew D. ; Kroeger, Kevin D. ; Kroeger, Timm ; Lark, Tyler J. ; Leavitt, Sara M. ; Lomax, Guy ; McDonald, Robert I. ; Megonigal, J. Patrick ; Miteva, Daniela A. ; Richardson, Curtis J. ; Sanderman, Jonathan ; Shoch, David ; Spawn, Seth A. ; Veldman, Joseph W. ; Williams, Christopher A. ; Woodbury, Peter B. ; Zganjar, Chris ; Baranski, Marci ; Elias, Patricia ; Houghton, Richard A. ; Landis, Emily ; McGlynn, Emily ; Schlesinger, William H. ; Siikamaki, Juha V. ; Sutton-Grier, Ariana E. ; Griscom, Bronson W.
    Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.
  • Article
    Expert review of the science underlying nature-based climate solutions
    (Nature Research, 2024-03-21) Buma, Brian ; Gordon, Doria R. ; Kleisner, Kristin M. ; Bartuska, Ann ; Bidlack, Allison ; DeFries, Ruth ; Ellis, Peter W. ; Friedlingstein, Pierre ; Metzger, Stefan ; Morgan, Granger ; Novick, Kimberly ; Sanchirico, James N. ; Collins, James R. ; Eagle, Alison J. ; Fujita, Rod ; Holst, Eric ; Lavallee, Jocelyn M. ; Lubowski, Ruben N. ; Melikov, Cyril ; Moore, Lisa A. ; Oldfield, Emily E. ; Paltseva, Julia ; Raffeld, Anna M. ; Randazzo, Nina A. ; Schneider, Chloe ; Aragon, Nazli Uludere ; Hamburg, Steven P.
    Viable nature-based climate solutions (NbCS) are needed to achieve climate goals expressed in international agreements like the Paris Accord. Many NbCS pathways have strong scientific foundations and can deliver meaningful climate benefits but effective mitigation is undermined by pathways with less scientific certainty. Here we couple an extensive literature review with an expert elicitation on 43 pathways and find that at present the most used pathways, such as tropical forest conservation, have a solid scientific basis for mitigation. However, the experts suggested that some pathways, many with carbon credit eligibility and market activity, remain uncertain in terms of their climate mitigation efficacy. Sources of uncertainty include incomplete GHG measurement and accounting. We recommend focusing on resolving those uncertainties before broadly scaling implementation of those pathways in quantitative emission or sequestration mitigation plans. If appropriate, those pathways should be supported for their cobenefits, such as biodiversity and food security.