Pelegrí Josep L.

No Thumbnail Available
Last Name
Pelegrí
First Name
Josep L.
ORCID
0000-0003-0661-2190

Search Results

Now showing 1 - 6 of 6
  • Article
    Characteristics and evolution of an Agulhas ring
    (John Wiley & Sons, 2017-09-01) Casanova-Masjoan, Maria ; Pelegrí, Josep ; Sangrà, Pablo ; Martínez-Marrero, Antonio ; Grisolía-Santos, Diana ; Pérez-Hernández, M. Dolores ; Hernández-Guerra, Alonso
    A South Atlantic ring is studied through remote sensing altimetry, hydrographic stations, and drifters' trajectories. The ring's core was characterized by warmer and saltier Indian Ocean waters. At the time of the cruise, the ring's signature extended radially out to 124 km and vertically down to 2000 m, and its core absolute dynamic topography (ADT) exceeded the surrounding Atlantic Ocean waters in 0.4 m. The geostrophic velocities were anticyclonic with maximum speeds about 35 cm s−1 at 100 m and reaching negligible values near 4500 m. The rotational transport inside the ring was 33 Sv in the thermocline and intermediate layers. The drifters' data distinguish a 30-km core revolving as a solid body with periodicity near 5 days and a transitional band that revolves with constant tangential velocity, resembling a Rankine vortex. The ADT data identify the ring's track, showing that it was shed by the Agulhas Current retroflection in November 2009 and propagated northwest rapidly during the first 2 months (mean speed of about 10 cm s−1) but slowed down substantially (3–4 cm s−1) between March and July 2010, when it was last detected. The altimetry data also outlines the evolution of the ring's core ADT, radius, vorticity, and, through a simple calibration with the cruise data, rotational transport. In particular, the ring surface and vertical-mean vorticity decay with time scales of 373 and 230 days, respectively, indicating that most of the property anomalies contained by the ring are diffused out to the subtropical gyre before it reaches the western boundary current system.
  • Article
    Differences between 1999 and 2010 across the Falkland Plateau : fronts and water masses
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-07-07) Perez-Hernandez, M. Dolores ; Hernández-Guerra, Alonso ; Comas-Rodríguez, Isis ; Benítez-Barrios, Verónica M. ; Fraile-Nuez, Eugenio ; Pelegrí, Josep ; Naveira Garabato, Alberto C.
    Decadal differences in the Falkland Plateau are studied from the two full-depth hydrographic data collected during the ALBATROSS (April 1999) and MOC-Austral (February 2010) cruises. Differences in the upper 100 dbar are due to changes in the seasonal thermocline, as the ALBATROSS cruise took place in the austral fall and the MOC-Austral cruise in summer. The intermediate water masses seem to be very sensitive to the wind conditions existing in their formation area, showing cooling and freshening for the decade as a consequence of a higher Antarctic Intermediate Water (AAIW) contribution and of a decrease in the Subantarctic Mode Water (SAMW) stratum. The deeper layers do not exhibit any significant change in the water mass properties. The Subantarctic Front (SAF) in 1999 is observed at 52.2–54.8° W with a relative mass transport of 32.6 Sv. In contrast, the SAF gets wider in 2010, stretching from 51.1 to 57.2° W (the Falkland Islands), and weakening to 17.9 Sv. Changes in the SAF can be linked with the westerly winds and mainly affect the northward flow of Subantarctic Surface Water (SASW), SAMW and AAIW/Antarctic Surface Water (AASW). The Polar Front (PF) carries 24.9 Sv in 1999 (49.8–44.4° W), while in 2010 (49.9–49.2° W) it narrows and strengthens to 37.3 Sv.
  • Article
    Mixing and overturning across the Brazil‐Malvinas Confluence
    (American Geophysical Union, 2023-04-23) Orúe‐Echevarría, Dorleta ; Polzin, Kurt L. ; Naveira Garabato, Alberto C. ; Forryan, Alexander ; Pelegrí, Josep L.
    The rates of isopycnal stirring and water mass transport by mesoscale eddies, and of diapycnal mixing by small‐scale turbulence, across the Brazil‐Malvinas Confluence (BMC) are assessed from a set of microstructure and hydrographic measurements in the Argentine Basin. This assessment is founded on a theoretical framework that applies a triple decomposition to the temperature variance equation and assumes eddies to transfer potential vorticity downgradient. The BMC is found to host widespread intense isopycnal stirring at rates of O(103–104 m2 s−1), and generally weak diapycnal mixing at rates of O(10−6–10−5 m2 s−1). Despite such disparity, both diapycnal mixing and isopycnal stirring play roles of comparable importance in determining regional water mass properties within surface and mode waters. In deeper layers, isopycnal stirring prevails. Eddies are further diagnosed to effect an important cross‐BMC transport, at rates of O(1 m2 s−1). When scaled by the along‐stream extent of the BMC, these rates integrate to volume transports that may be as large as O(10 Sverdrups). This suggests that cross‐BMC transfers of waters are substantially effected by eddy‐induced flows.
  • Preprint
    Cadmium isotope variations in the Southern Ocean
    ( 2013-09-09) Xue, Zichen ; Rehkamper, Mark ; Horner, Tristan J. ; Abouchami, Wafa ; Middag, Rob ; van de Flierdt, Tina ; Baar, Hein J. W. de
    Cadmium concentrations and isotope compositions were determined for 47 seawater samples from the high nutrient low chlorophyll (HNLC) zone of the Atlantic sector of the Southern Ocean. The samples include 13 surface waters from a transect of the Weddell Gyre and 3 depth profiles from the Weddell Sea and Drake Passage. The Southern Ocean mixed layer samples from this study and Abouchami et al. (2011) define a clear but broad ‘HNLC trend’ in a plot of ε114/110Cd versus [Cd], which is primarily a consequence of isotopic fractionation associated with biological uptake (ε114/110Cd is the deviation of the 114Cd/110Cd ratio of a sample from NIST SRM 3108 Cd in parts per 10,000). The trend is especially apparent in comparison to the large range of values shown by a global set of seawater Cd data for shallow depths. The Southern Ocean samples are also distinguished by their relatively high Cd concentrations (typically 0.2 to 0.6 nmol/kg) and moderately fractionated ε114/110Cd (generally between +4 and +8) that reflect the limited biological productivity of this region. Detailed assessment reveals fine structure within the ‘HNLC trend’, which may record differences in the biological fractionation factor, different scenarios of closed and open system isotope fractionation, and/or distinct source water compositions. Southern Ocean seawater from depths ≥1000 m has an average ε114/110Cd of +2.5 ± 0.2 (2se, n = 16), and together with previous results this establishes a relatively constant ε114/110Cd value of +3.0 ± 0.3 (2se, n = 27) for global deep waters. Significant isotopic variability was observed at intermediate depths in the Southern Ocean. Seawater from 200 m to 400 m in Weddell Sea has high Cd concentrations and ε114/110Cd as low as +1, presumably due to remineralization of Cd from biomass that records incomplete nutrient utilization. Antarctic Intermediate Water, which was sampled at 150 to 750 m depth in the Drake Passage, features a distinct Cd isotope signature of ε114/110Cd ≈ +4, which reflects biological isotope fractionation at the surface and subsequent mixing into the ocean interior. Taken together, our results demonstrate that coupled Cd isotope and concentration data provide valuable insights into the distribution and biological cycling of Cd in the water column. The highly systematic nature 55 of Cd isotope signatures may furthermore prove to be of utility for future research in marine geochemistry and paleoceanography.
  • Preprint
    Gabriel T. Csanady : understanding the physics of the ocean
    ( 2006-03-26) Pelegri, Josep L. ; Churchill, James H. ; Kirwan, A. D. ; Lee, S.-K. ; Munn, R. E. ; Pettigrew, Neal R.
    Gabriel T. Csanady turned 80 in December 2005 and we celebrate it with this special Progress in Oceanography issue. It comprises 20 papers covering some of the many areas that Gabe contributed significantly throughout his professional career. In this introductory paper we briefly review Gabe’s career as an engineer, meteorologist and oceanographer, and highlight some of his major contributions to oceanography, both as a scientist as well as an educator. But we also use this opportunity to remember and thank Gabe, and his wife Joyce, for being such good friends and mentors to several generations of oceanographers. The authors of the collection of papers in this volume deserve special thanks for their efforts. We also are pleased to acknowledge the support of Progress in Oceanography’s editor, Detlef Quadfasel, and the many anonymous reviewers who generously contributed their time and expertise.
  • Article
    Temporal evolution of the momentum balance terms and frictional adjustment observed over the inner shelf during a storm
    (Copernicus Publications on behalf of the European Geosciences Union, 2016-01-18) Grifoll, Manel ; Aretxabaleta, Alfredo L. ; Pelegri, Josep L. ; Espino, Manuel
    We investigate the rapidly changing equilibrium between the momentum sources and sinks during the passage of a single two-peak storm over the Catalan inner shelf (NW Mediterranean Sea). Velocity measurements at 24 m water depth are taken as representative of the inner shelf, and the cross-shelf variability is explored with measurements at 50 m water depth. During both wind pulses, the flow accelerated at 24 m until shortly after the wind maxima, when the bottom stress was able to compensate for the wind stress. Concurrently, the sea level also responded, with the pressure-gradient force opposing the wind stress. Before, during and after the second wind pulse, there were velocity fluctuations with both super- and sub-inertial periods likely associated with transient coastal waves. Throughout the storm, the Coriolis force and wave radiation stresses were relatively unimportant in the along-shelf momentum balance. The frictional adjustment timescale was around 10 h, consistent with the e-folding time obtained from bottom drag parameterizations. The momentum evolution at 50 m showed a larger influence of the Coriolis force at the expense of a decreased frictional relevance, typical in the transition from the inner to the mid-shelf.